Giải phương trình
x2 - 4x + 4 =9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left|x\right|=t\left(t\ge0\right)\). Ta có phương trình \(t^2-t=6\)
\(\Rightarrow t^2-t-6=0\Rightarrow t^2-3t+2t-6=0\)
\(\Rightarrow\left(t-3\right)\left(t+2\right)=0\Rightarrow\left[{}\begin{matrix}t=3\left(TM\right)\\t=-2\left(L\right)\end{matrix}\right.\)
\(\Rightarrow\left|x\right|=3\Rightarrow x=\pm3\)
\(x=0\) không là nghiệm của phương trình
Chia hai vế phương trình cho x, phương trình trở thành:
\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)
Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)
Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)
\(\Leftrightarrow m\ge f\left(2\right)=-2\)
\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán
ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
\(4x^3+4x^2-5x+9=4\sqrt[4]{\left(2x+1\right).2.2.2}\le2x+1+2+2+2\)
\(\Leftrightarrow4x^3+4x^2-7x+2\le0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)^2\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\le0\) (do \(x+2>0\) ; \(\forall x\ge-\dfrac{1}{2}\))
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy pt có nghiệm duy nhất \(x=\dfrac{1}{2}\)
a:
=>\(\sqrt{\left(2x+1\right)^2}=3\)
=>|2x+1|=3
=>2x+1=3 hoặc 2x+1=-3
=>2x=2 hoặc 2x=-4
=>x=-2 hoặc x=1
b:
ĐKXĐ: x>=1
PT\(\Leftrightarrow5-2\sqrt{x-1}+3\sqrt{x-1}=0\)
=>\(\sqrt{x-1}+5=0\)(vô lý)
Lời giải:
a. PT $\Leftrightarrow \sqrt{(2x+1)^2}=3$
$\Leftrightarrow |2x+1|=3$
$\Leftrightarrow 2x+1=3$ hoặc $2x+1=-3$
$\Leftrightarrow x=1$ hoặc $x=-2$ (tm)
b. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow 5-\sqrt{4(x-1)}+\sqrt{9(x-1)}=0$
$\Leftrightarrow 5-2\sqrt{x-1}+3\sqrt{x-1}=0$
$\Leftrightarrow 5+\sqrt{x-1}=0$
$\Leftrightarrow \sqrt{x-1}=-5<0$ (vô lý)
Do đó không tồn tại $x$ tm.
a) \(4x^4-9=0\Leftrightarrow x^4=\dfrac{9}{4}\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{3}{2}\\x^2=-\dfrac{3}{2}\left(vn\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{3}{2}}\\x=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)
Vậy...
b) \(\sqrt{9x-9}-\sqrt{x-1}=8\left(đk:x\ge1\right)\)
\(\Leftrightarrow\sqrt{9\left(x-1\right)}-\sqrt{x-1}=8\)
\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x=17\)(thỏa)
Vậy...
a) \(4x^4-9=0\Leftrightarrow\left(2x^2\right)^2=3^2\Leftrightarrow2x^2=3\Leftrightarrow x^2=\dfrac{3}{2}\Leftrightarrow x=\pm\sqrt{\dfrac{3}{2}}\)
\(\sqrt{4x^2-4x+1}=3-x\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\\ \Leftrightarrow2x-1=3-x\\ \Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\\ \sqrt{9x+9}+\sqrt{x+1}-\sqrt{4x+4}=2\left(x+1\right)\left(x\ge-1\right)\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{9}+1+\sqrt{4}\right)=2\left(x+1\right)\\ \Leftrightarrow6\sqrt{x+1}=2\left(x+1\right)\\ \Leftrightarrow3\sqrt{x+1}=x+1\\ \Leftrightarrow\sqrt{x+1}\left(3-\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=8\left(tm\right)\end{matrix}\right.\)
a, ĐK: \(x\in R\)
\(\sqrt{4x^2-4x+1}=3-x\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\)
\(\Leftrightarrow\left|2x-1\right|=3-x\)
TH1: \(\left\{{}\begin{matrix}2x-1\ge0\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{4}{3}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\1-2x=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x=-2\end{matrix}\right.\Leftrightarrow x=-2\)
từ đề bài=> (x-2)^2 = 9
x- 2 = 3 hoặc x- 2 = -3
=> x = 5 hoặc x = -1
vậy x= 5 hoặc x= -1
x2 -4x+4=9
<=>(x-2) 2=9
<=>x-2=3
<=>x=5