Chứng ming rằng: 3n+4 +3n+3 +3n+2+3n+1 chia hết cho 12 với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Nếu n = 2k (k thuộc N)=> 3n+2016 = 3.2k+2016 = 6k+2016 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Nếu n=2k+1(k thuộc N) => 3n+2015=3(2k+1)+2015=6k+2018 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Vậy...
với n thuộc N
\(\Rightarrow\)( 3n + 2015 ) ( 3n + 2016 ) là 2 số liên tiếp
\(\Rightarrow\)(3n + 2016 ) ( 3n + 2016 ) chia hết cho 2
(giả sử ( 3n + 2015 ) là chẵn thì ( 3n + 2016 ) là lẻ
Ta có :
\(3^{n+4}+3^{n+3}+3^{n+2}+3^{n+1}\)
\(=\)\(3^n.3^4+3^n.3^3+3^n.3^2+3^n.3\)
\(=\)\(3^n\left(3^4+3^3+3^2+3\right)\)
\(=\)\(3^n.\left(81+27+9+3\right)\)
\(=\)\(3^n.120\)
\(=\)\(3^n.10.12\) chia hết cho \(12\)
Vậy \(3^{n+4}+3^{n+3}+3^{n+2}+3^{n+1}\) chia hết cho \(12\) với mọi \(n\inℕ\)
3n + 4 + 3n + 3 + 3n + 2 + 3n + 1
= 3n .34 + 3n . 33 + 3n . 32 + 3n . 31
= 3n . (34 + 33 + 32 + 31)
= 3n. 120
= 3n . 12 . 10 \(⋮\)12
Vậy 3n + 4 + 3n + 3 + 3n + 2 + 3n + 1 \(⋮\)12