K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

 = (x2-x+1)(x2+3x+10)+10 = P

x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0

x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0

vây P>0

29 tháng 12 2018

x^2 - x + 3/4 

= x^2 - 2.x.(1/2) + (1/2)^2 - (1/2)^2 + 3/4

= (x-1/2)^2 + 1/2 

Có (x-1/2)^2 >= 0 => (x-1/2)^2 + 1/2 >= 1/2 > 0

Vậy x^2 - x + 3/4 > 0 với mọi giá trị của x

29 tháng 12 2018

\(x^2-x+\frac{3}{4}=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)

Do \(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

\(\RightarrowĐPCM\)

6 tháng 10 2018

Để \(B=\frac{x^2-x+1}{2}>0\forall x\) thì ta cần chứng minh :

\(x^2-x+1>0\)

\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)( đpcm )

30 tháng 10 2018

Mong mọi người giúp với, mình đang cần gấp!!! Thanks

30 tháng 10 2018

a) (x+3)^2-(x-5)(x+5)-6x

= x^2+6x+9-x^2+25-6x

= 9+25

= 94

vậy...

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

NV
15 tháng 3 2022

Tìm 2 giá trị của x để hàm \(f\left(x\right)\) nhận kết quả trái dấu là được.

a.

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-1< 0\) (chọn \(x=0\) do nó làm triệt tiêu tham số m, thường sẽ ưu tiên chọn những giá trị x kiểu thế này. Ở câu này, có đúng 1 giá trị x khiến m triệt tiêu nên phải chọn thêm)

\(f\left(-1\right)=m^2-1+6-1=m^2+4>0\) với mọi m (để ý rằng ta đã có \(f\left(0\right)\) âm nên cần chọn x sao cho \(f\left(x\right)\) dương, mà \(-m^2\) nên ta nên chọn x sao cho nó chuyển dấu thành \(m^2\))

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0;\forall m\)

\(\Rightarrow\) Hàm luôn có ít nhất 1 nghiệm thuộc  \(\left(-1;0\right)\) với mọi m

Hay với mọi m thì pt luôn luôn có nghiệm

NV
15 tháng 3 2022

b.

Đặt \(f\left(x\right)=\left(m^2+m+5\right)\left(3-x\right)^{2021}x+x-4\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-4< 0\) 

(Tới đây, nếu ta chọn tiếp \(x=3\) để triệt tiêu m thì cho \(f\left(3\right)=-1\) vẫn âm, ko giải quyết được vấn đề, nên ta phải chọn 1 giá trị khác. Thường trong những trường hợp xuất hiện \(m^2\) thế này, cố gắng chọn x sao cho hệ số của \(m^2\) dương (nếu cần \(f\left(x\right)\) dương, còn cần \(f\left(x\right)\) âm thì chọn x sao cho hệ số \(m^2\) âm). Ở đây dễ nhất là chọn \(x=2\) , vì khi đó \(\left(3-2\right)^{2021}=1\) vừa đảm bảo hệ số \(m^2\) dương vừa dễ tính toán, nếu chọn \(x=1\) cũng được thôi nhưng quá to sẽ rất khó biến đổi)

\(f\left(2\right)=\left(m^2+m+5\right).\left(3-2\right)^{2021}.2+2-4=2\left(m^2+m+5\right)-2\)

 \(=2m^2+2m+8=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{2}>0;\forall m\)

\(\Rightarrow f\left(0\right).f\left(2\right)< 0;\forall m\Rightarrow\) hàm luôn có ít nhất 1 nghiệm thuộc \(\left(0;2\right)\) với mọi m

Hay pt đã cho luôn có nghiệm với mọi m