K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Đặt \(\sqrt{x+2011}=a\)

ta có \(x^2=2011-a\)

\(a^2=x+2011\)

=> ta có hệ phương trình :

\(\hept{\begin{cases}x^2=2011-a\\a^2=x+2011\end{cases}}\Rightarrow x^2-a^2=-\left(a+x\right)\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\orbr{\begin{cases}x=-a\\x=a-1\end{cases}}\)

tự giải nốt nha

6 tháng 3 2018

ĐKXĐ : x+2011 >= 0 <=> x > -2011

pt <=> (x^2+x+1/4) = (x+2011)-\(\sqrt{x+2011}\)+1/4

<=> (x+1/2)^2 = \(\left(\sqrt{x+2011}-\frac{1}{2}\right)^2\)

Đến đó bạn tự làm nha !

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

26 tháng 9 2017

Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:

Ta có:

\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)

\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)

\(\Rightarrow x=2013;y=2014;z=2015\)

P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé

2 tháng 4 2015

\(ĐKXĐ:x\ne2009;y\ne2010;z\ne2011;x,y,z\in R\)

\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{y-2010}-\frac{\sqrt{y-2011}}{y-2011}+\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}=\frac{-3}{4}\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}^2}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{\sqrt{y-2010}^2}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{\sqrt{z-2011}^2}+\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^{^2}+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)

  • \(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}=0\)

 

  • \(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}=0\)
  • \(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{1}{\sqrt{x-2009}}=\frac{1}{2};\frac{1}{\sqrt{y-2010}}=\frac{1}{2};\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\)

\(\Leftrightarrow x=2013;y=2014;z=2015\inĐKXĐ\)

  VẬY       \(x=2013;y=2014;z=2015\)

 

26 tháng 11 2017

ko biet E=MC'2

9 tháng 3 2018

x - 3/2011 + x - 2/2012 = x - 2012/2 + x - 2011/3
( x - 3 -2011)/2011 + (x - 2-2012)/2012 = (x - 2012-2)/2 + (x - 2011-3)/3
(x-2014)/2011+(x-2014)/2012=(x-2014)/2+(x-2014)/3
(x-2014)(1/2011+1/2012-1/2-1/3)=0
x-2014=0 vì (1/2011+1/2012-1/2-1/3 khác  0
x= 2014

 k cho mk nha

22 tháng 3 2016

nhớ tích cho mk nha bạn

22 tháng 3 2016

(x-3/2011)-1+(x-2/2012)-1 = (x-2012/2)-1+(x-2011/3)-1

x-2014/2011+x-2014/2012 = x-2014/2+x-2014/ 3

(x-2014)(1/2011+1/2012-1/2-1/3)=0

x-2014 =0 [vì (1/2011+ 1/2012-1/2-1/3#0)]

x=2014