chứng to :với mọi SN n,ps 3n-5/3-2n là ps tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ƯCLN (2n+3;4n+8) là d
=> 2n+3 chia het cho d ; 4n+8 chia hết cho d
=>2(2n+3) chia hết cho d
hay 4n+6 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
2 chia hết cho d
=> d thuộc {1;2}
*) xét d=2 thì 2n+3 chia hết cho 2
mà 2n chia hết cho 2 nhưng 3 không chia hết cho 2
=>d khác 2
=> d =1
vậy phân số 2n+3/4n+8 là phân số tối giản với mọi n thuôc N
gọi d là UCLN(2n+3;4n+8)
ta có:
4n+8-2(2n+3) chia hết d
=>4n+8-4n+3 chia hết cho d
=>2 chia hết cho d
=>d thuộc {1,2}
mà ps trên tối giản khi d=1
Đặt ƯCLN(2n+3; 4n+8) = d
=> 2n + 3 chia hết cho d và 4n + 8 chia hết cho d
=> (4n + 8) - [2.(2n + 3)] chia hết cho d
=> (4n + 8) - (4n + 6) = 2 chia hết cho d
=> d \(\in\) Ư(2) = {1; 2}
Mà d \(\ne\) 2 do d là ước chung của một số lẻ (2n + 3) và một số chẵn (4n + 8)
Vậy d = 1 \(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản
Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n
Gọi \(d\) là \(UCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)
De \(\frac{5n+3}{3n+2}\)la phan so toi gian (n thuoc N)
thi 5n+3 chia het 3n+2
suy ra 3n+2 chia het 3n+2 suy ra 15n+10 chia het 3n+2
va 5n+3 chia het 3n+2 suy ra 15n+9 chia het 3n+2
suy ra ( 15n+10 - 15n+9 ) chia het 3n+2
suy ra 1 chia het 3n+2
suy ra 3n+2 thuoc uoc cua 1 la 1 ,-1
vi n thuoc N nen 3n+2=1
suy ra 3n=1-2
suy ra n=-1/3( loai)
vay x thuoc rong
mình pt làm câu sau thôi:
đặt UCLN của (2n+1, 3n+1) d
=> 2n+1 chia hết cho d và 3n+1 chia hết cho d
=> 6n+3 chia hết cho d và 6n+2 chia hết cho d
=> 1chia hết cho d và d=1
bài tương tự nha bn
Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?
gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.
để chứng minh 3n+2/5n+3l là pstg ta cần chứng minh ƯCLN[3n+2,5n+3]=1
Gọi ƯCLN[3n+2,5n+3]=d[d thuộc N*]
tao có:
3n+2chia hết cho d và 5n+3 chia hết cho d
suy ra 5.[3n+2]chia hêt cho d và 3.[5n+3]
suy ra 15n+10 chia hết cho d và 15n+9 chia hết cho d
suy ra [15n+10]-[15n+9] chia hết cho d
suy ra 1 chia hết cho d
suy ra d thuộc Ư[1]
Mà Ư[1]=[1,-1]
Lại có d thuộc N*
do đó d=1 hay ƯCLN[3n+2,5n+3]=1
suy ra 3n+2/5n+3 là pstg
vậy
Gọi ƯCLN của 2n + 1 và 3n + 1 là d, ta có:
\(2n+1⋮d\) và \(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d;2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{2n+1}{3n+1}\)là p/s tối giản với mọi n
Gọi d là ƯCLN của n và 2n+1
Ta có: n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
Ta có: (2n+1)-2n chia hết cho d
=>1 chia hết cho d
=>d=1
=> ƯCLN của n và 2n+1 là 1
Vậy phân số \(\frac{n}{2n+1}\) là phân số tối giản
Gọi d là ƯCLN của n và 2n+1
Ta có: n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
Ta có: (2n+1)-2n chia hết cho d
=>1 chia hết cho d
=>d=1
=> ƯCLN của n và 2n+1 là 1
Vậy phân số n/2n+1 là phân số tối giản