Cho đường tròn O, A là điểm nằm ngoài dtron O. Từ A kẻ 2 tiếp tuyến AB,AC .Vẽ đk BD ,BC cắt AO tại H,AD cắt O tại E.cm gócBDH=gócHAD.
ai giúp gấp mình tick cho ạ .pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có
\(\widehat{KOA}\) chung
Do đó: ΔOKA đồng dạng với ΔOHF
=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)
=>\(OH\cdot OA=OK\cdot OF\left(5\right)\)
Xét ΔOCA vuông tại C có CH là đường cao
nên \(OH\cdot OA=OC^2=R^2=OD^2\left(6\right)\)
Từ (5)và (6) suy ra \(OK\cdot OF=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
Xét ΔOKD và ΔODF có
\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD đồng dạng với ΔODF
=>\(\widehat{OKD}=\widehat{ODF}=90^0\)
=>FD là tiếp tuyến của (O)
Tam giác CDK đồng dạng Tam giác ABO ( g.g) => CK/BA = DK/OB => CK.OB=BA.DK (1) . Tam giác DBA có IK//BA => IK/BA = DK/BD => IK.BD=BA.DK (2) . Từ (1) (2) =>CK.OB=IK.BD => CK.OB=IK.2OB=> CK=2IK . Lập luận 1 tí rồi suy ra điều phải chứng minh