Tìm giá trị lớn nhất của biêu thức:
M=\(\frac{b}{7-\left(a+b\right)}\) với a, b là các số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét mẫu số 330,6-72:(a-6) Nếu a=6 thì biểu thức này sẽ không xác định hay A không xác định
b,\(\frac{39,48.17+83.39,48}{330,6-72:\left(a-6\right)}=\frac{39480}{3216}\)
\(\Rightarrow\frac{39,48.\left(83+17\right)}{330,6-72:\left(a-6\right)}=\frac{1645}{134}\)
\(\frac{3948}{330,6-72:\left(a-6\right)}=\frac{1645}{134}\)
\(3948.134=1645.\left[330,6-72:\left(a-6\right)\right]\)
\(\Rightarrow330,6-72:\left(a-6\right)=321,6\)
\(72:\left(a-6\right)=9\)
\(a-6=8\)
\(a=14\)
c,Nhỏ nhất khi 330,6-72:(a-6)=1
72:(a-6)=329,6
a-6=45/206
a=1281/206
Đặt \(\sqrt{x+m}=t\Rightarrow m=t^2-x\)
Pt trở thành:
\(x^2-2x-t=t^2-x\)
\(\Leftrightarrow x^2-t^2-x-t=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=t\\x-1=t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-x=\sqrt{x+m}\left(x\le0\right)\\x-1=\sqrt{x+m}\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x=m\left(x\le0\right)\left(1\right)\\x^2-3x+1=m\left(x\ge1\right)\left(2\right)\end{matrix}\right.\)
TH1: (1) có nghiệm duy nhất và (2) vô nghiệm (sử dụng đồ thị hoặc BBT)
\(\Rightarrow\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m< -\dfrac{5}{4}\\\end{matrix}\right.\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
TH2: (1) vô nghiệm và (2) có nghiệm duy nhất
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m=-\dfrac{5}{4}\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left\{-\dfrac{5}{4}\right\}\cup\left(-1;0\right)\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a) (100-4)*20-15+25:5
=94*20-15+5
=1880-30
=1850
b) 100-(4*20)-15+25:5
=100-80-15+5
=10
Nhớ k cho mình nha bạn !