Cho a,b,c lớn hơn bằng 0,a+b+c=1,a^3+b^3+c^3=1 tính p=a^2005+b^2017+c^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán sai.
Ví dụ: a \(\ge\) b \(\ge\) c 1
Thì có a=1, b=1, c=1
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}<2\)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
a) Ta có:
\(5^2=25\equiv-1\left(mod13\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5^{2004}=\left(5^2\right)^{1002}\equiv\left(-1\right)^{1002}\left(mod13\right)\equiv1\left(mod13\right)\\5^{2002}=\left(5^2\right)^{1001}\equiv\left(-1\right)^{1001}\left(mod13\right)\equiv-1\left(mod13\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^{2005}=5^{2004}.5\equiv1.5\left(mod13\right)\equiv5\left(mod13\right)\\5^{2003}=5^{2002}.5\equiv\left(-1\right).5\left(mod13\right)\equiv-5\left(mod13\right)\end{matrix}\right.\)
\(\Rightarrow5^{2005}+5^{2003}\equiv5+\left(-5\right)\left(mod13\right)\equiv0\left(mod13\right)\)
Vậy...
Áp dụng bđt Cauchy:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=1\Rightarrow1-\dfrac{1}{1+a}=\dfrac{1}{1+b}+\dfrac{1}{1+c}\)
\(\Rightarrow\dfrac{a}{1+a}\ge\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge2\sqrt{\dfrac{1}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự ta có:
\(\dfrac{b}{1+b}\ge2\sqrt{\dfrac{1}{\left(1+a\right)\left(1+c\right)}}\) (2)
\(\dfrac{c}{1+c}\ge2\sqrt{\dfrac{1}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân vế (1);(2);(3):
\(\Rightarrow\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\ge8\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(N=\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)
Ta chứng minh \(\frac{3+a^2}{3-a}\ge2a\) với mọi \(0< a< 3\), thật vậy:
\(\Leftrightarrow3+a^2-2a\left(3-a\right)\ge0\)
\(\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)
Tương tự ta có: \(\frac{3+b^2}{3-b}\ge2b\); \(\frac{3+c^2}{3-c}\ge2c\)
Cộng vế với vế: \(\Leftrightarrow N\ge2\left(a+b+c\right)=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 2 :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
Mà \(2018=a+b+c\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)
Mà \(a+b+c=2018\)
\(\Leftrightarrow-b+b+c=2018\)
\(\Leftrightarrow c=2018\)
Khi đó \(M=\frac{1}{2018^{2017}}\)
Các trường hợp còn lại tương tự
Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)
Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài 2 ở link này nhé!
Ai làm được kết bạn với mình, mình sẽ k đúng