Cho đường tròn O, A a2 điểm nằm ngoài dtron O. Từ A kẻ 2 tiếp tuyến AB,AC .Vẽ đk BD ,BC cắt AO tại H,AD cắt O tại E.cm gócBDH=gócHAD.
ai giúp mình gấp được kh ạ :( Cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
a:góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔABM và ΔANB có
góc ABM=goc ANB
góc BAM chung
=>ΔABM đồng dạng vơi ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
c: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực củaBC
=>OA vuông góc CB
=>AH*AO=AB^2=AM*AN
=>AM/AO=AH/AN
=>ΔAMH đồng dạng với ΔAON
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
ko hiểu