K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

Ta có :

\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)

Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)

Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)

1 tháng 3 2018

n thuộc N

B=x^2 +2x +1 =(x+1)^2

\(A=x^{4n+2}+2.x^{2n+1}+1=\left(x^{2n+1}\right)^2+2.\left(x^{2n+1}\right)+1=\left(x^{2n+1}+1\right)^2\)

\(\dfrac{A}{B}=\left(\dfrac{x^{2n+1}+1}{x+1}\right)^2\)

với n =0 đúng

n >0 =>2n+1 >=3

=> x^(2n+1) =(x+1).g(x) => dpcm

1 tháng 11 2020

bạn có ghi thiếu đề ko vậy?

1 tháng 11 2020

Ko Moon Anhs

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3