Tìm tất cả các số nguyên tố p và q sao cho các số 7p+q va pq +11 cũng là các số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu cả \(p,q\)đều là số lẻ thì \(pq+11\)là số chẵn nên không thể là số nguyên tố.
Nếu \(p=2\):
\(q+14\), \(2q+11\)đều là số nguyên tố.
Với \(q=3\)thỏa mãn.
Với \(q>3\)thì \(q=3n+1\)hoặc \(q=3n+2\).
- \(q=3n+1\)thì \(q+14=3n+15⋮3\).
- \(q=3n+2\)thì \(2q+11=2\left(3n+2\right)+11=6n+15⋮3\).
Nếu \(q=2\):
\(7p+2\), \(2p+11\)đều là số nguyên tố.
Xét các trường hợp của \(p\)tương tự trường hợp \(p=2\).
Kết luận: có các trường hợp thỏa mãn là \(\left(p,q\right)\in\left\{\left(2,3\right),\left(3,2\right)\right\}\)
Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2
Nếu p = 2
=> 7p + q = 7.2 + q = 14 + q
q sẽ có 3 dạng là : 3k ; 3k+1;3k+2
Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố
q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố
q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố
Vậy q = 3 ; p = 2
VÀ TH q = 2 bn tự xét nha
Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2
Nếu p = 2
=> 7p + q = 7.2 + q = 14 + q
q sẽ có 3 dạng là : 3k ; 3k+1;3k+2
Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố
q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố
q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố
Vậy q = 3 ; p = 2
VÀ TH q = 2 bn tự xét nha
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)p \(⋮\)2 hoặc q\(⋮\)2
thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố
\(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)q \(⋮\)3 hoặc q chia 3 dư 2
thay q=3k+2;p=2 vào pq +11 ta đc
2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)
mà q là số nguyên tố \(\Rightarrow\)q =1
2. chứng minh tương tự
đúng thì k nha
Gúp mình nhanh lẹ nhá AI NHANH K CHO