cho a b c thuộc z
biet ab-ac+bc-c^2=-1
chung minh a va b hai so doi nau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(ab-ac+bc-c^2=-1\Leftrightarrow a\left(b-c\right)+\left(b-c\right).c=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\)
Vì : a + c và b - c là hai số đối nhau \(\Rightarrow a+c=-\left(b-c\right)\Leftrightarrow a+c=-b+c\)
\(\Rightarrow a=-b\left(đpcm\right)\)
ab-ac+bc-c2=-1
=> a.(b-c)+c.(b-c)=-1
=> (b-c).(a+c)=-1
=> (b-c).(a+c)=-1.1=1.(-1)
+) b-c=-1; a+c=1
=> (b-c)+(a+c) = b-c+a+c = a + b = -1 + 1 = 0
=> a và b đối nhau
+) b-c=1; a+c=-1
=> (b-c)+(a+c) = b-c+a+c = a + b = 1 + (-1) = 0
=> a và b đối nhau
Vậy 2 số a và b đối nhau.
a) Xét ΔABC và ΔAMN có:
AB = AM (gt)
góc MAN = BAC ( đối đỉnh )
AC = AN (gt)
=> ΔABC = ΔAMN ( c.g.c )
b) Vì ΔABC = ΔAMN nên góc ABC = AMN ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên BC // MN
a) do tam giác ABC có \(\widehat{B}>\widehat{C}\)
\(\Rightarrow AB< AC\)
b) câu b đề bài bạn ghi sai hết sạch em kiểm tra lại đề nhé
câu b nè :
xét \(\Delta AMB\)và \(\Delta CMD\):
AM = DM ( gt)
\(\widehat{AMB}=\widehat{CMD}\)( đối đỉnh)
=> CD =
BM = CM ( gt)
=> \(\Delta AMB\)=\(\Delta CMD\)(c.g.c)
=>AB=CD ( 2 cạnh tương ứng)
câu còn lại dễ rồi bạn tự làm đi nehs ( vì mik phải đi học lun về r mik giải típ cho