K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Ta có : 

\(S=2^{2013}-2^{2012}-2^{2011}-...-2-1\)

\(S=2^{2013}-\left(2^{2012}+2^{2011}+...+2+1\right)\)

Đặt \(A=1+2+...+2^{2011}+2^{2012}\)

\(2A=2+2^2+...+2^{2012}+2^{2013}\)

\(2A-A=\left(2+2^2+...+2^{2012}+2^{2013}\right)-\left(1+2+...+2^{2011}+2^{2012}\right)\)

\(A=2^{2013}-1\)

\(\Rightarrow\)\(S=2^{2013}-\left(2^{2012}-2^{2011}-...-2-1\right)=2^{2013}-A=2^{2013}-\left(2^{2013}-1\right)=2^{2013}-2^{2013}+1=1\)

Vậy \(S=1\)

link này nè bn!

https://olm.vn/hoi-dap/detail/103540952175.html

S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
(S-P)^2013 = 0

22 tháng 2 2017

https://hoc24.vn/hoi-dap/question/189829.html

dô đây tham khảo ; dạng tương tự

24 tháng 8 2016

các bạn giải toán nhanh dùm mình với.mình cần gấp

7 tháng 4 2018

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(=\left(1+\frac{1}{3}+......+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+........+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+......+\frac{1}{2013}\)

\(=P\)

\(\Leftrightarrow S-P=0\)

\(\Leftrightarrow\left(S-P\right)^{2013}=0\)

20 tháng 3 2020

Cho mình hỏi sao lại trừ 2 lần (1/2 - 1/4 ....) thế ạ

19 tháng 3 2017

\(A=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)'

\(A=\frac{\left(1+\frac{2012}{2}+1+\frac{2010}{2}+1+...+\frac{1}{2012}+1\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(A=\frac{\left(1+\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(A=\frac{2013\left(\frac{1}{2013}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(\Rightarrow A=2013\)

28 tháng 2 2019

Giải thích giùm e dấu bằng thứ nhất và hai được ko ạ?

16 tháng 12 2015

-1007!!!!!!!!