2+a+a2+...+ap-1. với a là số tự nhiên CMR a không là số chính phương(p>=5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
+) Nếu n chẵn => n = 2k (k \(\in\) N) => 2n = 22k = 4k
=> 2n + 3 = 4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương (Số chính phương chia cho 4 chỉ dư 0 hoặc 1)
+) Nếu n lẻ => n = 2k + 1 (k \(\in\) N* vì n > 1) => 2n + 3 = 22k+1 + 3 = 2.4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương
Vậy Với mọi n > 1 thì 2n + 3 không là số chính phương
2^n+3 ko phải là số chính phương vì 1 số chính phương chia 2 ko dư 3
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
AI LÀM HỘ MÌNH NHANH NHẤT MÌNH K LUÔN 2 CÁI. MÌNH CẢM ƠN NHIỀU
Ta có : b = 100...05 ( n-1 chữ số 0 ) = 999...9 ( n chữ số 9 ) + 6 = 9.111...1 ( n chữ số 1 ) + 6 = 9.a + 6
=> a.b + 1 = a.( 9.a + 6 )
= 9.a2 + 6.a + 1
= 9.a2 + 3.a + 3.a + 1
= 3.a.( 3.a + 1 ) + ( 3.a + 1 )
= ( 3.a + 1 ) . ( 3.a + 1 )
= ( 3.a + 1 )2 ( đpcm )
Vậy bài toán được chứng minh !
C.ơn nx bn đã tk cho mk ♥
Theo đề bài ra ta có :
b = 100...05 ( n -1 chữ số 0 ) = 999...9 ( n chữ số 9) + 6 = 9 . 111...1 ( n chữ số 1 ) + 6 = 9 . a + 6
\(\Rightarrow\) a . b + 1 = a . ( 9 . a + 6 )
= 9 . a2 + 6 . a + 1
= 9 . a2 + 3 . a + 3 . a + 1
= 3. a . ( 3 . a + 1 ) + ( 3 . a + 1 )
= ( 3 . a + 1 ) . ( 3 . a + 1 )
= ( 3 . a + 1 )2
\(\Rightarrow\left(Đpcm\right)\)