cho tam giác ABC cân tại A. D là điểm thuộc cạnh BC. chứng minh rằng AB>AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔBAD và ΔBCE có
\(\widehat{ADB}=\widehat{CEB}=90^o\)
\(\widehat{ABC}\) là góc chung
AB=BC(ΔABC cân tại B)
⇒ ΔBAD=ΔBCE(c.huyền.g.nhọn)
b)xét ΔEBF và ΔDBF có:
BF là cạnh chung
BD=BE(ΔBAD=ΔBCE)
\(\widehat{BDF}=\widehat{BEF}=90^o\)
⇒ΔEBF=ΔDBF(c.huyền.c.g.vuông)
⇒\(\widehat{EBF}=\widehat{DBF}\)(2 góc tương ứng)
hay BF là phân giác của \(\widehat{ABC}\)(đ.p.cm)
c)xét ΔABF và ΔCBF có:
AC=BC(ΔABC cân tại B)
BF là cạnh chung
\(\widehat{EBF}=\widehat{DBF}\)(ΔEBF=ΔDBF)
⇒ΔABF=ΔCBF(c-g-c)
⇒FA=FC(2 cạnh tương ứng)
xét ΔAFC có:
FA+FC>AC(bất đẳng thức tam giác)
mà FA=FC⇒FA>\(\dfrac{AC}{2}\)(đ.p.cm)
A B C D
a) Xét ABD và EBD có
BD cạnh chung
BAD=BED(=90)
ABD=EBD(vì BD là tia phân giác của B)
b ko biet
b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân
chịu.Em mới học lơp 5 thôi anh/chị ạ.HÃy vào trang và kết bạn với em nhé
chưa chắc bạn ơi
sai cũng được, giúp tớ với mai tớ nộp rồi