Cmr với mọi a thuộc Z thì P(x)=x^4-2005x^3+(2004+a)x^2-2003x+a+3 không thể có 2 nghiệm nguyên phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left[-2\left(a-1\right)\right]^2-4\cdot\left(a+1\right)\left(-a-3\right)\)
\(=4\left(a-1\right)^2+4\left(a+1\right)\left(a+3\right)\)
\(=4\left(a^2-2a+1\right)+4\left(a^2+4a+3\right)\)
\(=4a^2-8a+4+4a^2+16a+12\)
\(=8a^2+8a+16\)
\(=8\left(a^2+a+2\right)\)
\(=8\left(a^2+a+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=8\left[\left(a+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]>=8\cdot\dfrac{7}{4}>0\forall a\) khác -1
=>Phương trình luôn có hai nghiệm phân biệt khi \(a\ne-1\)