K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

23 tháng 2 2018

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a\times d}{b\times d}>\frac{c\times b}{d\times b}\) (quy đồng mẫu số) Vì do mẫu giống nhau nên tử lớn hơn sẽ lớn hơn \(\Rightarrow a\times d>c\times b\)

23 tháng 2 2018

Câu này lớp mấy đó ?

29 tháng 7 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 8 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.

3 tháng 2 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{c-a}{d-b}.\)

Lại có: \(d>c>b>a.\)

\(\Rightarrow d-b>a-c\)

\(\Rightarrow a+d>b+c\left(đpcm\right).\)

Chúc bạn học tốt!

3 tháng 2 2020

Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{c-a}{d-b}\)

Mà d>c>b>a\(\Rightarrow\)d-b>c-a⇒d+a>c+b⇒Điều cần chứng minh

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

24 tháng 8 2016

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\left(1\right)\)

Cộng 2 vế của (1) với ab

ad+ab<bc+ab

a(b+d)<b(a+c) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)

Cộng 2 vế của (1) với cd: ad+cd<bc+cd

d(a+c)<c(b+d) \(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)

Từ (2) và (3) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đpcm

b)Theo phần a có:

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy  \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

 

30 tháng 8 2016

a) Giả sử: \(\frac{a}{b}< \frac{a+c}{b+d}\)        (1)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\) 

\(\Rightarrow ab+ad< ba+bc\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}< \frac{c}{d}\) )

Vậy (1) là đúng.    (3)

Giả sử: \(\frac{a+c}{b+d}< \frac{c}{d}\)  (2)

\(\Rightarrow\left(a+c\right).d< \left(b+d\right).c\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}=\frac{c}{d}\) )

Vậy (2) đúng.  (4)

Từ (3) và (4) suy ra:

\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

b) \(\frac{-1}{3}< \frac{-2}{7}< \frac{-3}{11},< \frac{-4}{15}< \frac{-1}{4}\)

16 tháng 6 2016

a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)

Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)

b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)

Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)

16 tháng 6 2016

a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\) 

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)