Bài 1: Giải phương trình
a) 6/x^2-3x+2 + 4/x^2-4x+3 = 2/x^2-5x+6
b) 1/x^2+3x+2 + 1/x^2+5x+6 + 1/x^2+7x+12 + 1/x^2+9x+20 = 1/3
Bài 2 Tìm m để phương trình sau có nghiệm duy nhất
x+2/x-m = x+1/x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
\(đkxđ:x\ne1;2;3;4;5\\ \Leftrightarrow\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}=\dfrac{1}{15}\\ \Leftrightarrow-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}=\dfrac{1}{15}\\ \Leftrightarrow\dfrac{1}{x-5}-\dfrac{1}{x-1}=\dfrac{1}{15}\\ \Leftrightarrow60=x^2-6x+5\\ \)
\(\Leftrightarrow60=x^2-6x+5\\ \Leftrightarrow\left[{}\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\\ \Rightarrow D\)
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
a)
$2x+6=0$
$2x=-6$
$x=-3$
b) $4x+20=0$
$4x=-20$
$x=-5$
c)
$2(x-1)=5x-7$
$2x-2=5x-7$
$3x=5$
$x=\frac{5}{3}$
d) $2x-3=0$
$2x=3$
$x=\frac{3}{2}$
e)
$3x-1=x+3$
$2x=4$
$x=2$
f)
$15-7x=9-3x$
$6=4x$
$x=\frac{3}{2}$
g) $x-3=18$
$x=18+3=21$
h)
$2x+1=15-5x$
$7x=14$
$x=2$
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
1, 2mx−1x−1=m−2 (x≠1)(x≠1)
⇔ 2mx−1=(m−2)(x−1)
⇔ 2mx−1=x(m−2)−m+2
⇔ x.(m+2)=−m+3x.(m+2)=−m+3
Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5
⇒ PT vô nghiệm
Nếu m+2≠0 hay m≠−2 thì x=3mm+2
2, 2x2x²−5x+3+9x2x²−x−3=6
⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6
⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6
⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)
⇔ 11x²−7x=18x³−12x²−18x+12
⇔ 18x³−13x²−11x+12=0
a) \(ĐKXĐ:\)\(x\ne1;\)\(x\ne2;\)\(x\ne3.\)
\(\frac{6}{x^2-3x+2}+\frac{4}{x^2-4x+3}=\frac{2}{x^2-5x+6}\)
\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)\left(x-2\right)}+\frac{4}{\left(x-1\right)\left(x-3\right)}=\frac{2}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\)\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\Rightarrow\)\(6\left(x-3\right)+4\left(x-2\right)=2\left(x-1\right)\)
\(\Leftrightarrow\)\(6x-18+4x-8=2x-2\)
\(\Leftrightarrow\)\(8x=24\)
\(\Leftrightarrow\)\(x=3\) (ko thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm