Cho phan so A = 2n-1/n+3
Tim so nguyen n de A co gia tri la 1 so nguyen
pls, lam nhanh cho minh,mai di hoc :(. Thanks truoc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có A = \(\frac{2n-1}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)
Để A nguyên
=> \(\frac{7}{n+3}\) nguyên => 7 chia hết cho n + 3
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
A=2 (n + 3 ) - 7 / n+ 3
để A là số nguyên suy ra 7 chia hết cho n+ 3
suy ra n+ 3 thuộc ước của 7
suy ra n+3 thuộc 1;-1;7;-7
suy ra n thuộc -2;-4;4;-10
Cho phan so A = n+1/n-3 (nCZ)
a) Tim cac gia tri cua n de A la phan so
b) Tim n de A co gia tri nguyen
a) Để A = \(\frac{n+1}{n-3}\) là phân số thì \(n-3\ne0\)hay\(n\ne3\)
b) Để A là số nguyên thì:
\(n+1⋮n-3\)
mà \(n-3⋮n-3\)
\(\Rightarrow\left(n+1\right)-\left(n-3\right)⋮n-3\) hay\(4⋮n-3\)
\(\Rightarrow n-3\inƯ_{\left(4\right)}\)
\(\Rightarrow n\in\){4;2;5;1;7;-1}
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Ta có:
\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)
Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng giá trị:
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
Đặt UCLN(6n+1,2n-1)=d
2n-1 chia het cho d => 6n+1 chia het cho d
[(6n+5) - (6n+3)] chia het cho d
2 chia het cho d nhung 6n+5 va 6n+3 le
=> d=1.
Vậy n=1.
Để \(A=\frac{6n+5}{2n-1}\)có giá trị là số nguyên
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
Do \(3\left(2n-1\right)⋮2n-1\)
\(\Leftrightarrow8⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(8\right)\)
\(\Leftrightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2 | -1/2 | 5/2 | -3/2 | 9/2 | -7/2 |
Do n cần tìm là số nguyên
=> n = { 1 ; 0 }