cho hàm số f(x)=ax+b(a,b là hằng số,a khác 0)
tìm a,b biết f(1)=2;f(3)=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : f(2) = 5
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(2\right)\\\text{ax}-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a.2-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a=4\end{cases}}\)
Vậy a = 4
b ) Ta có : f(0) = 3
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(0\right)\\\text{ax}+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\a.0+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\b=3\end{cases}}\) ( 1 )
Ta có : f ( 1 ) = 4
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(1\right)\\\text{ax}+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a.1+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a+b=4\end{cases}}\) ( 2 )
Thay b = 3 ở ( 1 ) vào a+b=4 ở ( 2 ) ta được : a + 3 = 4
a = 1
Vậy a = 1 ; b = 3
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=5\\a+b=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\a-2b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(a,\text{Thay }x=-1;y=2\Leftrightarrow-a=2\Leftrightarrow a=-2\)
Xác định hàm số f(x) thoả mãn các điều kiện : f(0) = 0=> hàm số có dạng f(x)=ax; f(2) = 2016 và f(x1)/x1=f(x2)/x2 với x1 và x2 là hai giá trị bất kì khác 0 của x => 2006/2= ax2/x2=>2006x2=2ax2=>a=2006:2=1003 =>a=1003
Ta có:
\(f\left(1\right)=a+b=2\)
\(f\left(3\right)=3a+b=8\)
\(\Rightarrow f\left(3\right)-f\left(1\right)=2a=8-2=6\)
\(\Rightarrow a=3\)
Mà \(a+b=2\)
\(\Rightarrow b=-1\)
Vậy \(a=3;b=-1\)