K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(a,f\left(0\right)=0^3-0.3+2=2\)

\(f\left(1\right)=1^3-3.1+2=0\)

\(f\left(-1\right)=-1+3+2=4\)

\(b,f\left(x\right)=x^3-3x+2\)

\(f\left(x\right)=x^3-x-2x+2\)

\(f\left(x\right)=x\left(x^2-1\right)-2\left(x-1\right)\)

\(f\left(x\right)=\left(x-1\right)\left(x^2+x-2\right)\)

Vậy f(x) = 0 \(\Rightarrow x=1\)

Vậy nghiệm của f(x) là : 1

\(c,h\left(x\right)=f\left(x\right)+x=0+1=1>0\)

20 tháng 5 2021

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

20 tháng 5 2021

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề có vẻ sai. Bạn xem lại

a: \(F\left(x\right)=x^3+2x^2+3x+4\)

\(G\left(x\right)=x^3-x^2+3x+1\)

b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)

\(F\left(x\right)-G\left(x\right)=3x^2+3\)

10 tháng 5 2022

f(x)=x+2x2+3x+4

g(x)=xtrừ x2+3x+1

10 tháng 4 2021

`a,f(x)-g(x)+h(x)`

`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`

`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`

`=0+0+3x+1`

`=3x+1`

`b,f(x)-g(x)+h(x)=0`

`=>3x+1=0`

`=>x=-1/3`

26 tháng 5 2022

\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

                                    \(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

                               \(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)

                                  \(=2x+1\)

\(\text{b)Vì f(x)-g(x)+h(x)=0}\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x\)        \(=0-1=-1\)

\(\Rightarrow\)   \(x\)        \(=\left(-1\right):2=\dfrac{-1}{2}\)

\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)

a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)

b: f(x)-g(x)+h(x)=0

\(\Leftrightarrow2x^3+4x-1=0\)

\(\Leftrightarrow x\simeq0,2428\)

`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`

`= 2x^2+3`

 

`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)

`= -x^3+(3x^2-x^2)+(-3x+2x)+2`

`= -x^3+2x^2-x+2`

`P(x)-Q(x)-R(x)=0`

`-> P(X)-Q(x)=R(x)`

`-> R(x)=P(x)-Q(x)`

`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`

`-> R(x)=2x^2+3+x^3-2x^2+x-2`

`= x^3+(2x^2-2x^2)+x+(3-2)`

`= x^3+x+1`

`@`\(\text{dn inactive.}\)

a: P(x)-Q(x)-R(x)=0

=>R(x)=P(x)-Q(x)

=2x^2+3+x^3-2x^2+x-2

=x^3+x+1