Cho các số a;b;c khác 0, trong đó không có hai số nào có tổng bằng 0 và thỏa mãn đẳng thức \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{c+a}\).
Tính giá trị của biểu thức M=\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{980;5975\right\}\\ B=\left\{627;49137\right\}\\ C=\left\{980\right\}\)
Lời giải:
a. $A=\left\{30;33;35;50;53;55\right\}$
b. $B=\left\{80;71;62;53;44;35;26;17\right\}$
c. $C=\left\{10;21;32;43;54;65;76;87;98\right\}$
d. $D=\left\{14;25;36;47;58;69\right\}$
Giải:
a) \(A=\left\{30;33;35;50;53;55\right\}\)
b) \(B=\left\{17;26;35;44;53;62;71;80\right\}\)
c) \(C=\left\{10;21;32;43;54;65;76;87;98\right\}\)
d) \(D=\left\{14;25;36;47;58;69\right\}\)
1a) A = { 980, 5975}
b) B = { 627, 49137,756598}
c) C = { 980 }
Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)
Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)
Cảm ơn bạn nhé.
Bạn cho mình hỏi, làm sao ra được \(\dfrac{2019}{2019}\)vậy ạ?