K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

e chi trung trang minh day co chi zo kb voi tui

 

22 tháng 1 2017

XÉT TAM GIÁC ABC CÂN TẠI A CÓ

SUY RA GÓC B = GÓC C( ĐN TAM GIÁC CÂN)

XÉT TAM GIÁC ADE CÓ

AD=AE

SUY RA TAM GIÁC ADE CÂN TẠI A(ĐN TAM GIÁC CÂN)

SUY RA GÓC D = GÓC E( ĐN TAM GIÁC CÂN)

CÓ TAM GIÁC ADE CÂN TẠI A

     TAM GIÁC ABC CÂN TẠI A

SUY RA GÓC ADE= GÓC AED = GÓC B = GÓC C

MÀ CÁC GÓC NÀY NẰM Ở VỊ TRÍ ĐỒNG VỊ

SUY RA DE // BC

8 tháng 1 2017

hình bạn tự vẽ nhé

xét tam giác ADM và tam giác ADE có 

     AD = AE (GT)

     AM là cạnh chung

     DM = ME (gt)

Do đó tam giác ADM bằng tam giác ADE (c.c.c)

    suy ra \(\widehat{BAM}=\widehat{CAM}\)2 GÓC TƯƠNG ỨNG 

mà AN nằm giữa AB và AC

    suy ra TIA AN LÀ TIA PHÂN GIÁC GÓC BAC

  TƯƠNG TỰ TA CÓ TAM GIÁC ABN VÀ TAM GIÁC ACN BẰNG NHAU (C.C.C)

   suy ra \(\widehat{BAN}=\widehat{CAN}\)2 GÓC TƯƠNG ỨNG

MÀ TIA AN NẰM GIỮA TIA AB VÀ TIA AC

 SUY RA AN LÀ PHÂN GIÁC GÓC BAC (2)

  từ (1) và (2) suy ra A,M,N thẳng hàng

8 tháng 1 2017

Hình tự vẽ nha thanh niên :)

* Xét tam giác ADM và tam giác AEM có

AM là cạnh chung

AD=AE( theo GT )

DM=EM( M là trung điểm của DE)

=> Tam giác ADM = Tam giác AEM (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\)(2 góc tương ứng)

=>AM là tia phân giác của \(\widehat{DAE}\)(1)

* Xét tam giác ABN và tam giác ACN có

AN là cạnh chung

AB=AC ( theo GT )

BN=CN ( N là trung điểm của BC )

=> Tam giác ABN = tam giác ACN (c.c.c)

=> \(\widehat{BAN}\)=\(\widehat{CAN}\)( 2 góc tương ứng )

=>AN là tia phân giác của \(\widehat{BAC}\)(2)

Từ (1) và (2) => A;M;N thằng hàng ( A;M;N thuộc tia phân giác của góc BAC)

11 tháng 1 2020

Xét tam giác ADH và tam giácAEK có:

AH=AK(gt)

góc ADH=góc AEK(gt)

AD =AE(gt)

vậy tam giác ADH=tam giác AEK(c-g-c)

=>AH=AK(2 cạnh tương ứng)

sai đừng giận mk nhé!!

11 tháng 1 2020

Tự kẻ hình nha man,t nhác quá không muốn vẽ

Tam giác ADB và tam giác AEC bằng nhau vì \(AB=AC;\widehat{ABD}=\widehat{ACE};BD=AE\left(ezprove\right)\)

\(\Rightarrow\widehat{BAD}=\widehat{EAC}\Rightarrow\Delta AHD=\Delta AEK\left(ch-gn\right)\)

\(\Rightarrow AH=AK\left(đpcm\right)\)

17 tháng 5 2022

A B C D M P N E F

Ta có M, N, P là trung điểm của AB; AC; BC nên

MN là đường trung bình của tg ABC => MN//BC

NP là đường trung bình của tg ABC => NP//AB

MP là đường trung bình của tg ABC => MP//AC

Xét tg PMD có 

PD=PM => tg PMD cân tại P \(\Rightarrow\widehat{PMD}=\widehat{PDM}\) (góc ở đáy tg cân)

Mà MN//BC (cmt) \(\Rightarrow\widehat{NMD}=\widehat{PDM}\) (góc so le trong)

\(\Rightarrow\widehat{PMD}=\widehat{NMD}\) => MD là phân giác của \(\widehat{NMP}\) (1)

Xét tg PNE có

PE=PN => tg PNE cân tại P \(\Rightarrow\widehat{PNE}=\widehat{PEN}\) (góc ở đáy tg cân)

Mà MN//BC (cmt) \(\Rightarrow\widehat{MNE}=\widehat{PEN}\) (góc so le trong)

\(\Rightarrow\widehat{PNE}=\widehat{MNE}\) => NE là phân giác của \(\widehat{MNP}\) (2)

Xét tg NFP có

NF=PE=PN => tg NFP cân tại N\(\Rightarrow\widehat{NPF}=\widehat{NFP}\) (góc ở đáy tg cân)

Mà MP//AC (cmt) \(\Rightarrow\widehat{MPF}=\widehat{NFP}\) (góc so le trong)

\(\Rightarrow\widehat{NPF}=\widehat{MPF}\) => PE là phân giác của \(\widehat{MPN}\) (3)

Xét tg DEF

Từ (1) (2) (3) => DM; NE; PF đồng quy (trong tg 3 đường phân giác đông quy)

 

10 tháng 12 2018

weeeeeeeeeeeeeeeeeeeeeeeeee