CMR các cặp số sau đây là số nguyên tố cùng nhau:
a)a=n;b=2n+1
b)a=2n+1;b=3n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau
\(a,\) Gọi 2 số đó là \(2n+1;2n+3\left(n\in N\right)\)
Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\\ \Rightarrow2n+3-2n-1⋮d\\ \Rightarrow2⋮d\)
Mà \(d\) lẻ nên \(d=1\)
Vậy \(ƯCLN\left(2n+1,2n+3\right)=1\left(đpcm\right)\)
\(b,\) Gọi \(d=ƯCLN\left(2n+5,3n+7\right)\)
\(\Rightarrow2n+5⋮d;3n+7⋮d\\ \Rightarrow2\left(3n+7\right)-3\left(2n+5\right)⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+5,3n+7\right)=1\left(đpcm\right)\)
a: \(d=UCLN\left(n+1;n+2\right)\)
\(\Leftrightarrow n+2-n-1⋮d\)
hay d=1
b: \(d=UCLN\left(2n+2;2n+3\right)\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
hay d=1
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
à mà bạn ơi, bạn có thể cho mình biết tại sao 3(2n + 3) lại = (6n + 10) không nhỉ?
đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5
ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d
=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d
=> ( 6n + 5) - 3( 2n + 1) : hết cho d
=> 2 : hết cho d
=> d = 2
mà 2n + 1 ko : hết cho d
=> d = 1( dpcm)
a) Goi d la UCLN ( n ; n+1 ) b) Goi d la UCLN ( 3n+2 ;5n+3)
n+1 chia het cho d 3n+2 chia het cho d-->5(3n+2) chia het cho d
n chia het cho d 5n+3 chia het cho d-->3(5n+3) chia het cho d
-> n+1-n chia het cho d ->5(3n+2)-3(5n+3) chia het cho d
-> 1 chia het cho d -> 15n+10-15n-9 chia het cho d
Va n va n+1 la hai so ngto cung nhau - -> 1 chia het cho d
Vay 3n+2 va 5n+3 chia het cho d
c) Goi d la UCLN (2n+1;2n+3) d) Goi d la UCLN (2n+1;6n+5)
2n+1 chia het cho d 2n+1 chia het cho d-->3(2n+1) chiA het cho d
2n+3 chia het cho d--> 2n+1+2 chia het cho d 6n+5 chia het cho d
->2 chia het cho d ->6n+5-3(2n+1) chia het cho d
--> d \(\in\)U (2)-> d\(\in\) {1;2} -> 6n+5-6n-3 chia het cho d
d=2 loai vi 2n+1 khong chia het cho 2-> d=1 ->2 chia het cho d
Vay 2n+1 va 2n+3 la hai so ng to cung nhau --> d \(\in\)U (2)-> d\(\in\) {1;2}
d=2 loai vi 5n+3 k chia het cho 2-->d=1
vay 2n+1 va 6n+5 la2 so ng to cung nhAU
Gọi ƯCLN(a; b) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d => 6n+2 chia hết cho d
=> 6n+3-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(a; b) = 1
=> a và b nguyên tố cùng nhau (đpcm)
Gọi ƯCLN(a; b) là d. Theo đề bài, ta có:
n chia hết cho d => 2n chia hết cho d
2n+1 chia hết cho d
=> 2n+1-2n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(a; b) = 1
=> a và b nguyên tố cùng nhau (đpcm)