K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

\(\left(a^2-b^2\right):\left(a+b\right).\left(a-b\right)\)

\(=\left[5^2-\left(-3\right)^2\right]:\left[5+\left(-3\right)\right].\left[5-\left(-3\right)\right]\)

\(=\left[25-9\right]:2.8\)

\(=14:2.8=7.8=56\)

15 tháng 10 2018

15 tháng 4 2018

Thay a = -2, b = 4 vào biểu thức ta được:

( − 2 ) 2 + 2. ( − 2 ) .4 + 4 2 − 1 = 4 + ( − 16 ) + 16 − 1 = 3

25 tháng 9 2021

`a^2 + 2ab+b^2-1`

`= (a+b)^2-1`

`=(a+b)^2 - 1^2`

`=(a+b-1)(a+b+1)`

`= (-2+4-1)(-2+4+1)`

`= 3`

b: Ta có: \(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

\(=1-3ab+3ab\)

=1

20 tháng 9 2021

\(A=a^2\left(a+b\right)-b\left(a^2+b^2\right)+2013\)

Thay a=1;b=-1 vào biểu thức A ta có:

\(A=1\left(1+\left(-1\right)\right)-\left(-1\right)\left(1-1\right)+2013\)

\(=0-0+2013\)

\(=2013\)

 

20 tháng 9 2021

\(A=a^2\left(a+b\right)-b\left(a^2-b^2\right)+2013\)

\(=a^2\left(a+b\right)-b\left(a-b\right)\left(a+b\right)+2013\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+2013\)

\(=\left(1-1\right)\left(a^2-ab+b\right)^2+2013=0+2013=2013\)

20 tháng 9 2021

B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)

tính giá trị của các biểu thức sau

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

\(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

=1

26 tháng 9 2021

\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

9 tháng 8 2018

a − b = 29 + 12 5 − 2 5 = 3 + 2 5 2 − 2 5 = 3 A = a 3 − b 3 + a 2 + b 2 − 11 a b + 2015 = ( a − b ) ( a 2 + b 2 + a b ) + a 2 + b 2 − 11 a b + 2015 = 3 ( a 2 + b 2 + a b ) + a 2 + b 2 − 11 a b + 2015 = 4 ( a 2 − 2 a b + b 2 ) + 2015 = 4 a - b 2 + 2015 = 2051

23 tháng 9 2018

a 2 . b 2 = 4