Tính giá trị S = \(\dfrac{1}{a^7}+\dfrac{1}{b^7}\) với a = \(\dfrac{\sqrt{6}+\sqrt{2}}{2}\);b= \(\dfrac{\sqrt{6}-\sqrt{2}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x=16\Rightarrow A=\dfrac{\sqrt{16}+2}{\sqrt{16}-3}=\dfrac{4+2}{4-3}=6\)
\(b,B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\left(dk:x\ge0,x\ne1,x\ne9\right)\\ =\dfrac{\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-7\right)}{x-1}\\ =\dfrac{x+4\sqrt{x}-5-\sqrt{x}+7}{x-1}\\ =\dfrac{x+3\sqrt{x}+2}{x-1}\\ =\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(dpcm\right)\)
\(c,\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow4-\dfrac{x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-12-x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\) Pt vô nghiệm
Vậy không có giá trị x thỏa yêu cầu đề bài.
a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)
Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)
=>\(4⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
=>\(x\in\left\{16;4;25;1;49\right\}\)
b:
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
\(=4\sqrt{2a}-\dfrac{1}{5}\cdot5\sqrt{2a}+6\sqrt{2a}-\dfrac{2}{7}\cdot7\sqrt{2a}\)
\(=\sqrt{2a}\cdot\left(4-1+6-2\right)=7\sqrt{2a}\)
Lời giải:
ĐKXĐ: $x>0; x\neq 4$
\(A=\frac{\sqrt{x}-2+\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2}{\sqrt{x}+2}\)
\(B=\frac{7}{3}A=\frac{14}{3(\sqrt{x}+2)}\)
Hiển nhiên $B>0$
Với $x>0; x\neq 4\Rightarrow 3(\sqrt{x}+2)\geq 6$
$\Rightarrow B=\frac{14}{3(\sqrt{x}+2)}\leq \frac{14}{6}<3$
Vậy $0< B< 3$. $B$ nguyên $\Leftrightarrow B\in\left\{1;2\right\}$
$\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}\in\left\{1;2\right\}$
$\Leftrightarrow x\in\left\{\frac{64}{9}; \frac{1}{9}\right\}$ (tm)
\(a,\) Rút gọn
\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)
\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)
\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)
\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)
\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)
\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=5\)
Vậy \(A=5\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}-1\)
Vậy \(B=\sqrt{x}-1\)
\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)
\(\Leftrightarrow\sqrt{x}< 6\)
\(\Leftrightarrow x< 36\)
đk : \(x\ge0,x\ne1\)
\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)
\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)
\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P
\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)
c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)
\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)
\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
đối chiếu đk loại x2 còn x1 thỏa
Lời giải:
$a+b=\frac{\sqrt{6}+\sqrt{2}+\sqrt{6}-\sqrt{2}}{2}=\sqrt{6}$
$ab=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2.2}=\frac{6-2}{4}=1$
Khi đó:
$S=\frac{1}{a^7}+\frac{1}{b^7}=\frac{a^7+b^7}{a^7b^7}$
$=\frac{a^7+b^7}{(ab)^7}=\frac{a^7+b^7}{1}=a^7+b^7$
$=(a^3+b^3)(a^4+b^4)-a^3b^3(a+b)$
$=(a^3+b^3)(a^4+b^4)-(a+b)$
Ta có:
$a^3+b^3=(a+b)^3-3ab(a+b)=(\sqrt{6})^3-3\sqrt{6}=6\sqrt{6}-3\sqrt{6}=3\sqrt{6}$
$a^4+b^4=(a^2+b^2)^2-2a^2b^2=(a^2+b^2)^2-2$
$=[(a+b)^2-2ab]^2-2=(6-2)^2-2=14$
$S=3\sqrt{6}.14-\sqrt{6}=41\sqrt{6}$