K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Ta có:

\(\begin{array}{l}AB = CD\\ \Rightarrow AB + BC = CD + BC\\ \Rightarrow AC = BD\end{array}\)

b) Xét tam giác OAC và ODB có:

\(AC=BD\) (cmt)

\(\widehat A = \widehat D\) (gt)

\(OA=OD\) (gt)

\(\Rightarrow \Delta OAC = \Delta ODB\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)     Ta có: \(\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right)\)

Mà \(BC \in \left( {OBC} \right) \Rightarrow OA \bot BC\)

b)    Ta có \(\left. \begin{array}{l}OA \bot OB\\OB \bot OC\end{array} \right\} \Rightarrow OB \bot \left( {OAC} \right)\)

Mà \(CA \in \left( {OAC} \right) \Rightarrow CA \bot OB\)

c)     Ta có \(\left. \begin{array}{l}OC \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OC \bot \left( {OAB} \right)\)

Mà \(AB \in \left( {OAB} \right) \Rightarrow AB \bot OC\)

23 tháng 5 2022

`a,`

Xét $\Delta OAC$ và $\Delta ABC$ ta có `:`

`OA=OB(gt)`

\(\widehat{AOC}=\widehat{BOC}\) `( Oz` là tia phân giác \(\widehat{B}\) `)`

Chung `Oz`

`=>` $\Delta OAC$ `=` $\Delta ABC$ `(c.g.c)`

`=>` `{(\hat{OAC}=\hat{OBC} \text{( 2 góc tương ứng )}  ),(AC=BC \text{ (2 cạnh tương ứng)}):}` 

Từ `\hat{OAC}=\hat{OBC}`

`=>` `\hat{xAC}=\hat{yBC}` `(` kề bù với `2` góc bằng nhau `)`

`b,` Xem lại đề bài `: OC=OB?` 

23 tháng 5 2022

xem lại đề câu `b,` nha bn 

17 tháng 7 2018

B D O A Ê C H 1 2 2 1 1

\(a,Do\Delta\)vuông AHC có:

AH2=AE.AC (1)

\(\Delta\) vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest \(\Delta\)AED và \(\Delta\)ABC có:

\(\widehat{BAC}\)chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

=> Góc ADE = góc ACB ( điều phải chứng minh )

c, Do tam giác ADE đồng dạng với tam giác ABC 

=> Góc E1 = Góc B1 (1)

Mà góc B1 + góc H1 = 90 độ ( tam giác BDH vuông tại D )

Góc H1 + Góc H2 = 90 độ ( tam giác AHB vuông tại D )

=> Góc B1 = Góc H2 (2)

Từ (1) và (2) : => Góc E1 = góc H2 

Xét tam giác AOE và tam giác DOH có:

Góc O1 = Góc O2 ( 2 góc đối đỉnh )

Góc E1 = góc H2 ( chứng minh trên )

=> tam giác AOE đồng dạng với tam giác DOH (g-g)

=> \(\frac{OA}{OD}=\frac{OE}{OH}\)=> OA . OH = OD . OE

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

Tam giác ABD và BCE là tam giác đều nên \(\widehat {EBC} = \widehat {DAB} = 60^\circ \) và A, B, C thẳng hàng. Hai góc EBC và DAB ở vị trí đồng vị nên AD // BE.

Tam giác ABD và BCE là tam giác đều nên \(\widehat {DBA} = \widehat {ECB} = 60^\circ \) và A, B, C thẳng hàng. Hai góc DBA và ECB ở vị trí đồng vị nên BD // CE.

b) Ta có A, B, C thẳng hàng nên góc ABC bằng 180°. Mà \(\widehat {DBA} = \widehat {EBC} = 60^\circ  \Rightarrow \widehat {DBE} = 60^\circ \).

Vậy \(\widehat {ABE} = \widehat {DBC} = 120^\circ \) (\(\widehat {ABE} = \widehat {DBA} + \widehat {DBE};\widehat {DBC} = \widehat {DBE} + \widehat {EBC}\)).

c) Tam giác ABD và BCE là tam giác đều 

\(\Rightarrow AB=AD, BE=BC\)

Xét hai tam giác ABE và DBC có:

     AB = DB;

     \(\widehat {ABE} = \widehat {DBC} = 120^\circ \);

     BE = BC.

\(\Rightarrow \Delta ABE = \Delta DBC\) (c.g.c)

Do đó, AE = DC ( 2 cạnh tương ứng).

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

a) Xét ΔBAD và ΔABC có 

AB chung

\(\widehat{BAD}=\widehat{ABC}\)(gt)

AD=BC(gt)

Do đó: ΔBAD=ΔABC(c-g-c)

Suy ra: BD=AC(hai cạnh tương ứng)

Xét ΔADC và ΔBCD có 

AD=BC(gt)

AC=BD(cmt)

DC chung

Do đó: ΔADC=ΔBCD(c-c-c)

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)

\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD(cmt)

nên ABCD là hình thang(Định nghĩa hình thang)

Hình thang ABCD(AB//CD) có AC=BD(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

28 tháng 7 2021

còn thiếu câu b