Cho a,b,c lớn hơn 0;a+b+c=3
M=ab/c\(^2\)×(a+b) +ac/b\(^2\)×(b+c) + bc/a\(^2\)×(b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
\(c\ge\sqrt{ab}\Leftrightarrow\dfrac{c}{a}.\dfrac{c}{b}\ge1\)
BĐT cần chứng minh tương đương:
\(\dfrac{\left(c+a\right)^2}{c^2+a^2}\ge\dfrac{\left(c+b\right)^2}{c^2+b^2}\Leftrightarrow\dfrac{\left(\dfrac{c}{a}+1\right)^2}{\left(\dfrac{c}{a}\right)^2+1}\ge\dfrac{\left(\dfrac{c}{b}+1\right)^2}{\left(\dfrac{c}{b}\right)^2+1}\)
Đặt \(\left(\dfrac{c}{a};\dfrac{c}{b}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}xy\ge1\\y>x\Rightarrow y-x>0\end{matrix}\right.\) (1)
BĐT cần c/m trở thành: \(\dfrac{\left(x+1\right)^2}{x^2+1}\ge\dfrac{\left(y+1\right)^2}{y^2+1}\Leftrightarrow\dfrac{x}{x^2+1}\ge\dfrac{y}{y^2+1}\)
\(\Leftrightarrow xy^2+x\ge x^2y+y\Leftrightarrow xy\left(y-x\right)-\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(y-x\right)\ge0\) luôn đúng theo (1)
Vậy BĐT đã cho được c/m
Dấu "=" xảy ra khi \(xy=1\) hay \(c=\sqrt{ab}\)
Truy cập để nhận thẻ cào 50k free nè :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !!
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (1)
Thêm ab vào hai vế của (1):
\(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (2)
Thêm cd vào hai vế của (2):
\(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (3)
Từ (2) và (3) ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Đề thiếu kìa
Nếu đề là a^2 + b^2 >= 1/2.(a+b)^2 thì mk giải thế này :
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+a^2+b^2 >= a^2+2ab+b^2
<=> 2.(a^2+b^2) >= (a+b)^2
<=> a^2+b^2 >= 1/2.(a+b)^2
=> ĐPCM
Dấu "=" xảy ra <=> a=b
Tk mk nha