K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Áp dụng tính chất dãy tỉ số =nhau :

a/b=b/c=c/a=(a+b+c)/(a+b+c)=1

=> a=b=c =2012

1 tháng 12 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta đc:

           \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}\)

=> a=b

     b=c

     => a=b=c

mà a= 2012

=>b=c=2012

19 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau: 
\(\frac{a}{b}=\frac{b-2015c}{c}=\frac{2016c}{a}\)\(=\frac{a+b-2015c+2016c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\).
Suy ra \(\frac{a}{b}=1\Leftrightarrow a=b\).

19 tháng 10 2017

thanks bui thi van nha

12 tháng 2 2017

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(=\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)

\(\Rightarrow a=b=c=d\) Thay vào A ta được :

\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

24 tháng 10 2017

mk ko bt 123

\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\)           (1)

\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\)                  (2)

\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\)                  (3)

\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 9 2018

Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))

1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)

2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)

Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)

4 tháng 1 2019

bai nay de vl

26 tháng 12 2018

DTSBN

26 tháng 12 2018

*Nếu a + b + c = 0

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Thay vào M đc

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

  \(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

   \(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

   \(=-1\)

*Nếu \(a+b+c\ne0\)

Áp dụng t.c của dãy tsbn

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

\(\Rightarrow a=b=c\)

Thay vào M đc

\(M=\left(1+\frac{a}{a}\right)\left(1+\frac{b}{b}\right)\left(1+\frac{c}{c}\right)=2.2.2=8\)

Vậy ..............

27 tháng 10 2017

Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)

Thay (1) vào ta có :

\(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3\left(kb\right)^2+\left(kd\right)^2}{3b^2+d^2}=\frac{3k^2b^2+k^2+d^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\)(1)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2)

\(\Rightarrow\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(\RightarrowĐPCM\)