Cho hình chóp SABCD có đáy ABCD là hình vuông.
Biết AC=3a; SA=SB=SC=SD=CD. Gọi I là trung điểm của SB.
Tính d( I, (SCD))?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: (SC, (ABCD)) = ∠SCB
Gọi: \(O=AC\cap BD\)
Có: \(OC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)
\(OB=\dfrac{1}{2}BD=\dfrac{5}{2}a\)
Xét tam giác OBC vuông tại O (Do: ABCD là hình thoi nên AC ⊥ BD), có:
\(BC=\sqrt{OB^2+OC^2}=\dfrac{a\sqrt{34}}{2}\)
Xét tam giác SBC vuông tại B (Do: SB ⊥ (ABCD) ), có:
\(SB=BC.tan60^o=\dfrac{a\sqrt{102}}{2}\)
\(\Rightarrow V_{SABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{102}}{2}.\dfrac{1}{2}.3a.5a=\dfrac{5a^3\sqrt{102}}{4}\left(đvtt\right)\)
Đáp án D
Dựng A H ⊥ C D suy ra AH là đường vuông góc cung của SA vad CD Ta có:
S A C D = 1 2 A D . d C ; A D = 1 2 .3 a . A B = 3 a 2 2 .
Lại có:
C D = A B 2 + A D − B C 2 = a 5 ⇒ A H = 2 S A C D C D = 3 a 5
Do H là trung điểm của AB,
=> SH vuông (ABCD)
Do đó SH vuông HD. Có \(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)
\(\Rightarrow V_{S.ABCD}=\frac{1}{3}S.H.S_{ABCD}=\frac{a^3}{3}\)
Gọi K là hình chiếu vuông góc với H trên BD vs2 E là là hình chiếu vuông góc của H trên SK.
Có : BD vuông HK, BD vuông SH, BD vuông (SHK)
=> BD vuông HE.
Mà HE vuông SK
Do đó HE vuông (SBD)
Ta có : HK = HB \(\sin\widehat{KBH}=\frac{a\sqrt{2}}{4}\)
=> HE = \(\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{4}{3}\)
Do đó, d (A,(SBD)) = 2d (H,(SBD)) = 2HE = 2a/3
Đáp án B
A C = 2 a ⇒ A B = a 2 S B C ; A B C D ^ = S H O ^ = 45 0 S O = O H . tan 45 ° = a 2 2 V S . A B C D = 1 3 S O . S A B C D = a 3 2 3
Phương pháp:
Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V = 1 3 S h
Cách giải:
a: Xét ΔBAC có BA=BC và góc ABC=60 độ
nên ΔABC đều
=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)
=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)
Chỉ bà cách tính auto đơn giản để tính đường cao OK của tam giác SOH vuông tại O.
\(\dfrac{1}{OK^2}=\dfrac{1}{SO^2}+\dfrac{1}{OH^2}\)
Bấm máy cho nhanh chứ thi ĐH có 1,8 phút thôi:((