cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn (O;R). CÁc đường cao AD,BE,CF cát nhau tại H
a) chứng minh rằng : -tứ giác ABDE nội tiếp được đường tròn
-chứng minh AE.AC=AF.AB
- chứng minh OA\(\perp\)EF
-gọi K là giao điểm của 2 đường thẳng BC và EF. Đường thẳng đi qua F song song vói AC cắt AK, AD lần lượt tại M và N .chứng minh MF=NF
a: Xét tứ giác ABDE có \(\widehat{AEB}=\widehat{ADB}=90^0\)
nên ABDE là tứ giác nội tiếp
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc FAC chung
Do đó: ΔAEB\(\sim\)ΔAFC
SUy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AF\cdot AB\)