K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: Xét ΔANB và ΔACN có

góc ANB=góc ACN

góc NAB chung

=>ΔANB đồng dạng với ΔACN

=>AN^2=AB*AC

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: Xét ΔANB và ΔACN có

góc ANB=góc ACN

góc NAB chung

=>ΔANB đồng dạng với ΔACN

=>AN^2=AB*AC

5 tháng 5 2022

Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O 

=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\)  => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)

Xét từ giác AMON có :

AMO + ANO = 90 + 90 = 180 

Mà 2 góc này ở vị try đối diện nhau 

=> Tứ giác AMON nội tiếp < đpcm>

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

1 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MN ⊥ OM (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: QP ⊥ OP tại P

Vậy PQ là tiếp tuyến của đường tròn (O).

Ta có: MN ⊥ O’N (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: QP ⊥ O’Q tại Q

Tham khảo:

loading...