K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

ngu vcl

18 tháng 2 2020

câu a) bạn sử dụng tính chất của 3 đường cao là được.

b) bạn chứng minh là tam giác ABK là tam giác vuông do chắn nửa đường tròn

sau đó xét hai tam giác vuông ACD và AKB sao cho đồng dạng : có \(\widehat{ACD}=\widehat{AKB}\)do cùng chắn cung AB

sau đó bạn suy ra tỷ số đồng dạng rồi nhân chéo là xong.

c)

bạn xét hai tam giác MAB vad MCK  sao cho đồng dạng  do

hai góc M bằng nhau do đối đỉnh 

 góc MKC= góc MBA cùng chắn cung AC

rồi suy ra  2 tam giác đó dồng dạng rồi suy ra tỉ số đồng dạng rồi nhân chéo 

d  câu này ta có \(\hept{\begin{cases}CF\perp AB\\KB\perp AB\end{cases}\Rightarrow CF//KB\Leftrightarrow CH//KB}\)

\(\hept{\begin{cases}BE\perp AC\\KC\perp AC\end{cases}\Rightarrow BE//CK\Leftrightarrow BH//CK}\)

TỪ 2 ĐIỀU TRÊN ta suy ra được tứ giác CHBK LÀ HÌNH BÌNH HÀNH 

TỪ ĐIỀU ĐÓ SUY RA  I là giao diểm của hai đường chéo suy ra i là trung điểm của HK suy ra H,I,K thằng hàng

a: góc BMH+góc BKH=180 độ

=>BMHK nội tiếp

góc BKC=góc BQC=90 độ

=>BKQC nội tiếp

b: Xét ΔFAB và ΔFCA có

góc FAB=góc FCA(=1/2sđ cung AB)

góc F chung

=>ΔFAB đồng dạng với ΔFCA

=>FA/FC=FB/FA

=>FA^2=FC*FB

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

a) Xét tứ giác AEHF có

\(\widehat{HEA}+\widehat{HFA}=180^0\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

13 tháng 12 2021

\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)

\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)

Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

Do đó \(\widehat{BAH}=\widehat{OAC}\)

7 tháng 6 2021

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc CDH+góc CEH=90+90=180 độ

=>CDHE nội tiếp

b: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có

góc BEF=góc DEH

góc BFE=góc DHE

=>ΔBFE đồng dạng với ΔDHE