bài 5: Cho đường tròn (O;R) đường kính AB và điểm M thuộc đường (O) (MA< MB, M khác A và B). Kẻ MH vuông góc với AB tại H
a) Chứng minh tam giác ABM vuông. Gỉa sử MA=3cm, MB=4cm. Tính MH
b) Tiếp tuyến tại A của đường tròn (O) cắt tia BM ở C. Gọi N là trung điểm của AC. Chứng minh đường thẳng NM là tiếp tuyến của đường tròn (O)
c) Tiếp tuyến tại B của (O) cắt đường thẳng MN tại D. Chứng minh NA.BD=R^2
d) Chứng minh OC vuông góc AD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 12 2023
a: Xét (O) có
AH,AK là các tiếp tuyến
Do đó: AH=AK
=>A nằm trên đường trung trực của HK(1)
Ta có: OH=OK
=>O nằm trên đường trung trực của HK(2)
Từ (1) và (2) suy ra AO là đường trung trực của HK
=>AO\(\perp\)HK
b: Xét (O) có
ΔDHK nội tiếp
DK là đường kính
Do đó: ΔDHK vuông tại H
=>DH\(\perp\)HK
mà HK\(\perp\)OA
nên OA//HD