K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

Mạng mẽo như gì, xin lỗi bạn hen

c, (O;R) có EM, AE là 2 tiếp tuyến cắt nhau => AE = EM, EO là phân giác của góc AEM

\(\Delta AEM\) có: AE = EM \(\Rightarrow\Delta AEM\)cân tại E có EO là phân giác của \(\hat{AEM}\)nên EO là đường cao \(\Rightarrow EO\perp AM\)

\(\Delta AMB\) nội tiếp (O), AB là đường cao nên \(\Delta AMB\) vuông tại M \(\Rightarrow AM\perp MB\)

Từ 2 điều trên \(\Rightarrow\)EO // MB \(\Rightarrow\)\(\hat{EOM}=\hat{ABM}\) (so le trong)

Dễ dàng chứng minh \(\Delta EMO \sim \Delta AMB (g-g)\)\(\Rightarrow\dfrac{EM}{OE}=\dfrac{AM}{AB}\Rightarrow EM.AB=AM.OE\)(1)

Chứng minh tương tự ta có: \(\Delta FMO \sim \Delta BMA (g-g)\)\(\Rightarrow\dfrac{OF}{MF}=\dfrac{AB}{BM}\Rightarrow OF.BM=AB.MF\)(2)

Cộng (1) và (2) ta có: \(AM.OE+OF.BM=AB.MF+EM.AB\)

\(=AB\left(MF+EM\right)=AB.EF\)

3 tháng 12 2018
https://i.imgur.com/0RUgXI8.png
21 tháng 11 2022

a: 

Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

b: AC*BD=MC*MD=MO^2=R^2

a: góc ACD=góc AMD=90 độ

=>ACMD nội tiếp

góc BMK+góc BCK=180 độ

=>BMKC nội tiếp

b: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có

góc CAK=góc CDB

=>ΔCAK đồng dạng với ΔCDB

=>CA/CD=CK/BC

=>CA*CB=CD*CK

 

a: Xét tứ giác HAOM có

\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)

=>HAOM là tứ giác nội tiếp

b: Xét (O) có

HA,HM là các tiếp tuyến

Do đó: HA=HM và OH là phân giác của góc MOA

Xét (O) có

KM,KB là các tiếp tuyến

Do đó: KM=KB và OK là phân giác của góc MOB

Ta có: HM+MK=HK(M nằm giữa H và K)

mà HM=HA và KM=KB

nên HA+KB=HK

c: Ta có: HA=HM

=>H nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra HO là đường trung trực của AM

=>HO\(\perp\)AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó; ΔAMB vuông tại M

=>AM\(\perp\)MB

Ta có: HO\(\perp\)AM

AM\(\perp\)MB

Do đó: HO//MB

=>\(\widehat{AOH}=\widehat{ABM}\)

Xét ΔAHO vuông tại A và ΔMAB vuông tại M có

\(\widehat{AOH}=\widehat{MBA}\)

Do đó: ΔAHO đồng dạng với ΔMAB

=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)

=>\(HO\cdot MB=AO\cdot AB=2R^2\)

25 tháng 5 2022

Please, help meeeee!!!

 

a: gó ACB=1/2*180=90 độ

=>BC vuông góc MA

góc ADB=1/2*180=90 độ

=>AD vuông góc MB

góc MCN+góc MDN=180 độ

=>MCND nội tiếp

b: Xet ΔMAB có

AD,BC là đường cao

AD cắt CB tại N

=>N là trực tâm

=>M,N,H thẳng hàng

c: góc ODI=góc ODN+góc IDN

=góc IND+góc OAD

=góc OAD+góc HNA=90 độ

=>OD là tiếp tuyến của (I)