Cho tam giác nhọn ABC không cân nội tiêp (O;R), có H là trực tâm. I, K làn lượt là đường cao kẻ từ A, B. M là trung điểm BC. Kẻ HJ vuông góc với AM.
a) Cm: Góc IHK = góc MJK
b) Cm: \(\Delta AJK\) đồng dạng với \(\Delta ACM\)
c) Cm: MJ . MA < R2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AMHN có: A M H ^ + A N H ^ = 90 0 + 90 0 = 180 0 => Đpcm
Xét tứ giác BNMC có: B N C ^ = B M C ^ = 90 0 => Đpcm
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b; góc ABD=1/2*180=90 độ
=>BD vuông góc AB
=>BD//CH
góc ACD=1/2*180=90 độ
=>CD vuông góc AC
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
=>BC cắt HDtại trung điểm của mỗi đường
=>H,M,D thẳng hàng
a: Xét tứ giác HMCN co
góc HMC+góc HNC=180 đô
=>HMCN là tứ giác nội tiếp
b: góc CBE=1/2*sđ cung CE
góc CAD=1/2*sđ cung CD
mà góc CBE=góc CAD
nên CE=CD
c: góc BHD=góc ACB=1/2*sđ cung AB=góc BDH
=>ΔBHD cân tại B
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CAD=góc NBC
=>1/2*sđ cung CD=1/2*sđ cung CE
=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA
góc BDH=1/2*sđ cung BA
=>góc BHD=góc BDH
=>ΔBHD cân tại B
a: Xét tứ giác AKIB có
góc AKB=góc AIB=90độ
=>AKIB là tứ giác nội tiếp
b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD
góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD
=>góc BHD=góc BDH
=>ΔBHD cân tại B