K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

Vẽ (O;OA) = (O;R/2) dễ thấy ^AMO lớn nhất Khi MA là tiếp tuyến của (O;R/2) <=> tg AMO vuông tại A và sin(^AMOmax) = OA/OM = 1/2 => ^AMOmax = 30o 
2/ Gọi O là tâm đường tròn bàng tiếp thuộc ^N . Hạ OH _|_ NM ; OI _|_ NP; OK _|_ MP 
Đặt x = MH = MK; y = PI = PK; r = OH = OI = OK 
Dễ thấy MK + PK = MP = V(3^2 + 4^2) = 5 <=> x + y = 5 (1) 
và NH = NI <=> MN + MH = NP + PI <=> x + 3 = y + 4 <=> x - y = 1 (2) 
Giải hệ gồm (1) và (2) => x = 3 
Dễ thấy tg HNO vuông cân tại H => r = OH = NH = MN + MH = 3 + 3 = 6cm

19 tháng 12 2021

MP=4cm

\(\widehat{N}=53^0;\widehat{P}=37^0\)

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

a: NP=5cm

b: Xét ΔEMD có 

EN là đường cao

EN là đường trug tuyến

Do đó: ΔEMD cân tại E

 

2 tháng 12 2015

sorry, em mới học lớp 6 thui

25 tháng 3 2023

M N P H

 

 a)xét \(\Delta HMN\) và \(\Delta MNP \) 

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{M}\) ( góc Chung)\)

\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)

 \(\)

b) Theo ddịnh lí Py-ta-go, ta có:

\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)

 

 

\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

 

) Theo ddịnh lí Py-ta-go, ta có:

\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)

 

 

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xet ΔABC vuông tại A và ΔMNP vuông tại M co

AB/MN=AC/MP

=>ΔABC đồng dạng vơi ΔMNP

b: ΔABC đồng dạng vơi ΔMNP

=>goc A=góc M; góc B=góc N; gócC=góc P