Trên một mặt phẳng, cho tam giác ABC và điểm M sao cho \(MA=1;MB=MC=\sqrt{21}\)
C/m: \(S_{\Delta ABC}\le8\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sorry bn mk chua hoc tg cân nên ko bt giai nhug hih mk bt ve
ko bt co dug o nhe!
sai đề rùi
cân tại A → AB=AC rùi còn j nữa
thấy đugs thì tick nha
a: Xét ΔABN và ΔACM có
AB=AC
góc ABN=góc ACM
BN=CM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>AM=AN
=>ΔAMN cân tại A
a) Tam giác MAB cân tại M nên góc BAM=góc ABM
Tam giác ABC cân tại A nên góc ACB=góc ABM
=> góc BAM= góc ACB (1)
Có Bx // AM nên góc ABN+góc BAM =180o (2) (cặp góc trong cùng phía bù nhau)
Có góc ACM+góc ACB=1800 (kề bù) (3)
Từ (1(,(2),(3)=> góc ABN= góc ACM
b) tam giác ABN= tam giác ACM (c-g-c) =>AN=AM
do đó tam giác AMN cân
A B C M x N
a, \(\Delta\)MAB cân tại M nên ^BAM = ^ABM
\(\Delta\)ABC cận tại A nên ^ACB = ^ABM
=> ^BAM = ^ACM (1)
Có : ^ABN + ^BAM = 180^0 (vì Bx // AM) (2) =)) cặp góc trong cùng phía
Có : ^ACM = ^ACB = 180^0 (kề bù) (3)
Từ 1;2;3 => ^ABN = ^ACM
b, Xét \(\Delta\)ABN và \(\Delta\)ACM ta có
AB = AC (gt)
BN = CN (gt)
^ABN = ^ACM (cmt)
=> \(\Delta\)ABN = \(\Delta\)ACM (c.g.c)
=> AN = AM (tương ứng)
Vậy \(\Delta\)AMN cân tại A