K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Xem lại đề.

18 tháng 2 2016

Tự vẽ hình

Ta có tam giác ABC đều<=>AB=BC=AC

Vì AH _|_ BC=> tam giác AHB và tam giác AHC vuông tại H

Xét tam giác AHB và tam giác AHC (vuông tại H) có:

AH: cạnh chung

AB=AC(chứng minh trên)

=>tam giác...=tam giác...( cạnh huyền-cạnh góc vuông)

=> góc HAB=góc HAC( cặp góc tương ứng)(1)

Mà góc AHB + góc AHC=góc BAC=60 đo( do tam giác ABC đều)(2)

 Từ (1);(2)=>góc HAB=60 đo/2=30 đo

18 tháng 2 2016

xét tam giác vuông AHB và tam giác vuông AHC ,có

AH: cạnh chung

AB=AC (gt)

do đó tam giác vuông AHB = tam giác vuông AHC (cạnh huyền-cạnh góc vuông)

suy ra: góc HAB = góc HAC (2 góc tương ứng)

mà : góc A = 600

nên góc HAB = 600 :2 = 300

vậy góc HAB = 300

16 tháng 7 2015

Câu a thì em sử dụng trường hợp = nhau trong tam giác [c.g.c] 

Câu b: 

1. chứng minh cho PHAQ là HCN [tứ giác có 3 góc vuông]

2. Từ HCN PHQA => PH=AQ [MÀ PH=PE ->PE=AQ] , PA=HQ[mà HQ=QF -> QF=PA] rồi xét 2 tam giác PAE = QFA[c.g.c]

Hai tam giác bằng nhau => AE=AF mà A thuộc EF => A là trung điểm của EF

 

23 tháng 4 2017

Cách 1: Dùng pytago với tgiác ABH => BH luôn

Cách 2: Dùng pytago với tgiác ACH => HC 

Mà phải cm H là trung điểm BC nữa => HB. Nhưng cminh cũng không có gì khó khăn đâu mà
Nên tốt nhất bạn chọn cách 1 đi. 

23 tháng 4 2017

Vì \(AH⊥BC\Rightarrow\Delta AHB\) là tam giác vuông

Vì \(\Delta AHB\) vuông \(\Rightarrow AB^2=AH^{^{ }2}+BH^{^{ }2}\left(Py-ta-go\right)\)

                              hay \(^{5^2=4^2+BH^2}\)

                             \(5^2-4^2=BH^2\)

                             \(25-16=BH^2\)

                            \(9=BH^2\Rightarrow BH=\sqrt{9}\Rightarrow BH=3cm\)

Vậy BH=3cm

                                   

23 tháng 8 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AH⊥BC (gt) ⇒ ΔAHB vuông tại H

Trong tam giác vuông AHB ta có: ∠BHA = 90o

⇒ ∠B + ∠BAH = 90o (1)

Trong tam giác vuông ABC ta có: ∠BAC = 90o

⇒ ∠B + ∠C = 90o (2)

Từ (1) và (2) suy ra: ∠BAH = ∠C (3)

+) Vì AI là tia phân giác của góc BAC nên:

∠(BAI) = ∠(IAH) = 1/2.∠BAH (4)

Do CI là tia phân giác của góc ACB nên:

∠(ACI) = ∠(ICB) = 1/2.∠C (5)

+) Từ (3); (4) và (5) suy ra:

∠(BAI) = ∠(IAH) = ∠(ACI) = ∠(ICB)

+) Lại có:

∠BAI + ∠IAC = 90º

Suy ra: ∠ICA + ∠IAC = 90º

Trong ΔAIC có: ∠ICA+ ∠IAC = 90º

Vậy: ∠AIC = 90º.

17 tháng 8 2021

 ko thấy phần b thì phải 

 

a: ΔBCA cân tạiA

mà AH là đường cao

nên AH là phân giác

b: Xet ΔBMI vuông tại M và ΔBHI vuông tại H có

BI chung

góc MBI=góc HBI

=>ΔBMI=ΔBHI

=>IM=IH

Xét ΔIMA vuông tại M và ΔINA vuông tại N có

AI chung

góc MAI=góc NAI

=>ΔIMA=ΔINA

=>IM=IN=IH

c: Xet ΔIMA vuông tại M và ΔINA vuông tại N có

AI chung

góc MAI=góc NAI

=>ΔIMA=ΔINA

=>góc MIA=góc NIA

=>IA là phân giác của góc MIN

b) Ta có: KI\(\perp\)BC(gt)

AH\(\perp\)BC(gt)

Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)

Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)

Ta có: ΔABK=ΔIBK(cmt)

nên KA=KI(hai cạnh tương ứng)

Xét ΔKAI có KA=KI(cmt)

nên ΔKAI cân tại K(Định nghĩa tam giác cân)

Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)

Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)

a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có 

BK chung

\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)