K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔABD=ΔEBD

b: ΔBAD=ΔBED

nên DA=DEvà góc BAD=góc BED=90 độ

góc ABC+góc C=90 độ

góc EDC+góc C=90 độ

Do đó: góc ABC=góc EDC

c: AH vuông góc với BC

DE vuông góc với BC

Do đó: AH//DE

10 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

Xét ΔDAF và ΔDEC có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DF=DC

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>\(\widehat{DAF}=\widehat{DEC}\)

mà \(\widehat{DEC}=90^0\)

nên \(\widehat{DAF}=90^0\)

Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)

=>\(\widehat{BAF}=90^0+90^0=180^0\)

=>B,A,F thẳng hàng

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

26 tháng 2 2020

a, xét  tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là pg của góc ABC (Gt)

BE = BA (gt)

=> tam giác ABD = tam giác EBD (c-g-c)

b, tam giác ABD = tam giác EBD (câu a)

=> DA = DE (đn)

và góc DAB = góc DEB (đn)

góc DAB = 90

=> góc DEB = 90

=> DE _|_ BC 

=> tam giác DEC vuông tại E (đn)

=> góc CDE + góc BCA = 90 (đl)

tam giác ABC vuông tại A (gt) => góc ABC + góc BCA = 90 (Đl)

=>  góc ABC = góc CDE

c, AH _|_ BC (Gt)

DE _|_ BC (câu b)

=> AH // DE (đl)

26 tháng 2 2020

B H E A D C

Mình vẽ hơi xấu mong bạn thông cảm:)

a) \(\Delta ABD\) và \(\Delta EBD\) có :

\(BE=BA\)

\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là phân giác )

\(BC:\) cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)

b) Từ ( 1 ) => \(DA=DE\) và \(\widehat{BAD}=\widehat{BED}=90^0\)

Mặt khác , ta có : \(\widehat{ABC}=\widehat{BAC}-\widehat{C}=90^0-\widehat{C}\)

\(\widehat{EDC}=\widehat{DEC}-\widehat{C}=90^0-\widehat{C}\)

\(\Rightarrow\widehat{ABC}=\widehat{EDC}\)

c) Ta có : \(AH\perp BC\)\(DE\perp BC\) ( vì \(\widehat{DEC}=90^0\) ) nên AH//DE

DD
19 tháng 12 2020

Xét \(\Delta ABD\)và \(\Delta EBD\)có: 

\(AB=EB\)(giả thiết) 

\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c) 

\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng) 

\(\Rightarrow DE\perp BC\).

24 tháng 3 2022

xl mình ko làm đc

24 tháng 3 2022

`Answer:`

undefined

a. Vì `\triangleABC` vuông tại `A` nên theo định lí Pytago, ta có:

\(AB^2=BC^2-AC^2\Leftrightarrow AB^2=13^2-12^2\Leftrightarrow AC^2=169-144=25\Leftrightarrow AC=5cm\)

b. Xét `\triangleABD` và `\triangleEBD:`

`BD` chung

`BA=BE`

`\hat{ABD}=\hat{EBD}`

`=>\triangleABD=\triangleEBD(c.g.c)`

c. Theo phần b. `\triangleABD=\triangleEBD`

`=>\hat{BAD}=\hat{BED}=90^o`

`=>DE⊥BC`

d. Xét `\triangleADF` và `triangleEDC:`

`AD=DE`

`\hat{DAF}=\hat{DEC}=90^o`

`\hat{ADF}=\hat{EDC}`

`=>\triangleADF=\triangleEDC(g.c.g)`

`=>AF=BC`

 

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

=>DE vuông góc BC

b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có

DA=DE
góc ADM=góc EDC

=>ΔDAM=ΔDEC

=>AM=EC

c: Xét ΔAEC và ΔEAM có

AE chung

EC=AM

AC=EM

=>ΔAEC=ΔEAM

29 tháng 10 2023

Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}=90^0\)

=>DE\(\perp\)BC