Cho tập hợp E={x∈R/1<=|2x-1|<=3};F=[a;a+2]. Tìm số thực a để E giao F khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x^2+8}{x^2+1}\in Z\)
\(\Leftrightarrow3x^2+3+5⋮x^2+1\)
\(\Leftrightarrow x^2+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;2;-2\right\}\)
E={0;2;-2}
E giao X={-2;2} nên trong tập X có -2;2
X hợp E={-2;-1;0;1;2} nên trong tập X có -1;1
=>X={-1;1;-2;2}
Tính chất đặc trưng là X={x∈Z|x∈Ư(2)}
Có \(\dfrac{3x^2+8}{x^2+1}=3+\dfrac{5}{x^2+1}\). Do đó
\(x\in E\Leftrightarrow\dfrac{5}{x^2+1}\in\mathbb{Z}\)\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=1\\x^2+1=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm2\end{matrix}\right.\)
Vì vậy \(E=\left\{0;-2;2\right\}\)
Nếu \(X\cup E=\left\{-2;-1;0;1;2\right\}\) thì \(X\)phải là tập con của \(\left\{-2;-1;0;1;2\right\}\). Kết hợp điều kiện \(X\cap E=\left\{-2;2\right\}\) suy ra \(X=\left\{-2;0;2\right\}\)
Ta có:
\(E=\left\{x\in R|x< -3\right\}\)
\(\Rightarrow E=\left\{....;-3\right\}\)
\(\Rightarrow E=\left\{-3;-\infty\right\}\)
Vậy chọn C
Đáp án: C
f(x)/g(x) = 0 ⇔ f(x) = 0 và g(x) ≠ 0. Nghĩa là H là tập hợp bao gồm các phần tử thuộc E nhưng không thuộc F hay H = E \ F.
Đáp án: A
f(x).g(x) = 0 ⇔ f(x) = 0 hoặc g(x) = 0. Nghĩa là H là tập hợp bao gồm các phần tử thuộc E hoặc thuộc F hay H = E ∪ F.
1<=|2x-1|<=3
\(\Leftrightarrow\left[{}\begin{matrix}1< =2x-1< =3\\-1>=2x-1>=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2< =2x< =4\\0>=2x>=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1< =x< =2\\-1< =x< =0\end{matrix}\right.\)
\(E=\left[1;2\right]\cup\left[-1;0\right]\)
Để F giao E khác rỗng thì \(\left[{}\begin{matrix}a>=-1\\a+2< =2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>=-1\\a< =0\end{matrix}\right.\)