giải bài tam giác ABC,AB=AC.Kẻ BD vuông góc với AC,CE vuông góc với AB (D thuộc AC;E thuộc AB).Gọi O là giao điểm của BD và CE.Chứng minh: a)BD=CE b)tam giác OEB = tam giác ODC c)AO là tia phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC
Hình minh họa:
Bài Làm:
a) Xét ΔBCE vuông tại E và ΔCBD vuông tại D có:
BC: chung
EBCˆ=DCBˆ(gt)EBC^=DCB^(gt)
=> ΔBCE=ΔCBD(ch−gn)ΔBCE=ΔCBD(ch−gn)
=> CE = BD (đpcm)
b) tg BCE = tg CBD
=> BE = CD (1)
và DBCˆ=ECBˆDBC^=ECB^
Ta có: DBCˆ+B1ˆ=EBCˆDBC^+B1^=EBC^; ECBˆ+C1ˆ=DCBˆECB^+C1^=DCB^
mà {DBCˆ=ECBˆ(cmt)EBCˆ=DCBˆ(gt) => B1ˆ=C1ˆB1^=C1^ (2)
Từ (1), (2) => ΔOEB=ΔODC(cgv-gnk) (đpcm)
c) Xét ΔABOΔABO và ΔACOΔACO có:
AB = AC (gt)
AO: chung
BO = CO (tg OEB = tg ODC)
=> ΔABO=ΔACO(c−c−c)
=> BAOˆ=CAOˆ mà O nằm trong tam giác ABC
=> AO là tia p/g của góc BAC (đpcm)
a ) Xét tam giác ABD và tam giác ACE có :
A là góc chung
AB = AC ( gt)
góc D = góc E = 90 độ ( gt )
Vậy tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b ) Ta có : góc D = góc E = 90 độ ( gt ) (1)
Ta có : AB = AC ( gt )
AE = AD ( do tam giác ABD = tam giác ACE )
=> BE = CD (2)
Ta có : góc EBO = góc DCO ( do tam giác ABD = tam giác ACE ) (3)
Từ (1) , (2) , (3) => Tam giác OEB = Tam giác ODC
c ) Xét tam giác ABO và tam giác ACO có :
AB = AC ( gt )
AO chung
BO = CO ( Tam giác OEB = Tam giác ODC )
=> Tam giác ABO = tam giác ACO ( c.c.c )
=> Góc BAO = góc CAO ( 2 góc tương ứng )
=> AO là tia phân giác của góc BAC ( đpcm )
Bạn vẽ hình giúp mình nha
Xét \(\Delta ABC\) có AB=AC \(\Rightarrow\)\(\Delta ABC\) cân tại A
Xét \(\Delta BEC\) vuông tại E và \(\Delta CDB\) vuông tại D có:
\(\left\{{}\begin{matrix}\widehat{EBC}=\widehat{DCB}\left(\Delta ABC.cân.tại.A\right)\\BC.là.cạnh.chung\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta BEC\)=\(\Delta CDB\)\(\Rightarrow\)BD=CE(đpcm)