Cho tam giác và 3 đường trung tuyến AM;BN;CP;BN\(⊥\)AM. Trên tia đối của MN lấy Q sao cho MQ=MN a) So sánh các cạnh của tam giác CPQ và các đường trung tuyến của tam giác ABC b)Chứng minh tam giác ABC là tam giác vuông
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
9 tháng 8 2023
AM là trung trực của BC
nên A nằm trên trung trực của BC
=>AB=AC
=>ΔABC cân tại A
S
4 tháng 3 2023
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
26 tháng 3
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
tk ủng hộ mk nha mọi người ai tk mk mk tk lại 3 tk
k lại mk nè