Bài 2: Cho tam giác BMA có \(\widehat{BMA}=135^0;BM=2;MA=\sqrt{6}\) . Lấy điểm C nằm cùng phía điểm M đối với đường thẳng AB sao cho \(\Delta ABC\) vuông cân ở A. Tính diện tích tam giác ABC.
Bài 3: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC = 3:7; AH = 42cm. Tính BH, CH.
Bài 4: Một tam giác vuông có cạnh huyền là 6,15 cm, đường cao ứng với cạnh huyền bằng 3 cm. Tính các cạnh góc vuông.
3) Theo hệ thức lượng trong tam giác vuông, ta có:
\(AB^2=BH.HC\)
\(AC^2=CH.HC\)
\(\Rightarrow\)\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Leftrightarrow\)\(\dfrac{9}{49}=\dfrac{BH}{CH}\)
\(\Rightarrow9CH=49BH\left(1\right)\)
Ta có: \(BH.CH=AH^2=42^2=1764\)
\(\Rightarrow CH=\dfrac{1764}{BH}\left(2\right)\)
\(\dfrac{\left(1\right)}{\left(2\right)}\Leftrightarrow\dfrac{9CH}{CH}=\dfrac{49BH}{\dfrac{1764}{BH}}\Leftrightarrow9=\dfrac{BH^2}{36}\)
\(\Rightarrow BH=\sqrt{36.9}=18\left(cm\right)\)
\(\Rightarrow CH=\dfrac{1764}{18}=98\left(cm\right)\)
Cảm ơn vì đã giúp đỡ nhưng trả lời muộn wa làm xong rồi...
AHIHI