K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Ta có \(\left(SHC\right)\cap\left(SHD\right)=SH\)

Từ giả thiết \(\left(SHC\right)\perp\left(ABCD\right);\left(SHD\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

                \(\Leftrightarrow V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}AB.AD.SH=\frac{1}{3}a^2\sqrt{3}.SH\left(1\right)\)

Ta có \(SH\perp\left(ABCD\right)\Rightarrow HD\) là hình chiếu của SD trên (ABCD), suy ra góc giữa SD và (ABCD) là \(\widehat{SDH}=60^0\Rightarrow SH=HD\tan\widehat{SDHH}=\frac{a\sqrt{39}}{2}\)

Khi đó \(V_{S.ABCD}=\frac{1}{2}a^3\sqrt{13}\)

Dựng hình bình hành ACBE. Khi đó AC//BE suy ra AC//(SBE)

\(\Rightarrow d\left(AC,SB\right)=d\left(AC,\left(SBE\right)\right)=d\left(A,\left(SBE\right)\right)=2d\left(H,\left(SBE\right)\right)\)

Gọi K, I lần lượt là hình chiếu của H trên BE và SK.

Khi đó \(BE\perp KH,BE\perp SH\Rightarrow BE\perp HI\left(1\right)\)

Mặt khác \(HI\perp SK\left(2\right)\)

Từ (1) và (2) suy ra \(HI\perp\left(SBE\right)\Rightarrow d\left(H,\left(SBE\right)\right)=HI\)

Tính được \(HK=\frac{a\sqrt{3}}{4};HI=\frac{a\sqrt{39}}{\sqrt{212}}\)

\(\Rightarrow d\left(AC,SB\right)=2d\left(H,\left(SBE\right)\right)=2HI=\frac{a\sqrt{39}}{\sqrt{53}}=\frac{a\sqrt{2067}}{53}\)

27 tháng 9 2017

Ý C

29 tháng 1 2018

Đáp án D

Diện tích hình chữ nhật ABCD  S = 2a2, chiều cao SA =a.

Vậy thể tích khối chóp S.ABCD là V = 1 3 . 2 a 2 . a = 2 3 a 3

8 tháng 4 2017

11 tháng 5 2017

Đáp án C

14 tháng 4 2019

15 tháng 8 2019

Đáp án B

 

Do S A ⊥ A B C D

⇒ V S A B C D = 1 3 S A . d t A B C D = 1 3 S A . A B . B C = 1 3 a 3 .2 a . a = 2 a 3 3 3

27 tháng 2 2019

Đáp án B

Thể tích khối chóp là

V = 1 3 S A . S A B C D = 1 3 . a . 3 .2 a . a = 2 a 3 3 3

6 tháng 3 2017

Đáp án B

Thể tích khối chóp S.ABCD là:

V A B C D = 1 3 S A . S A B C D = 1 3 2 a .3 a 2 = 2 a 3

24 tháng 12 2019

Chọn đáp án C

13 tháng 7 2019

Đáp án D

26 tháng 12 2018

Chọn B