Cho tam giac ABC can tai A,goc A=30do;BC=2.Tren canh AC lay diem D sao cho AD=√2. a)Tinh goc ABD b)So sanh 3 canh cua tam giac DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em lạy chị, chị đánh giấy giúp em với !!!
a) Xét 2 tam giác AHD và AHB có:
DH=BH (gt)
AH là cạnh chung
Do đó: AHD=AHB (tự hiểu)
\(\Rightarrow\) AD=AB (2 cạnh tương ứng) (Với lại do không có kí hiệu tam giác nên nếu ghi sẽ rất mất thời gian)
Xét tam giác ABD có :
AD=AB (cmt)
Do đó: ABD cân tại A
Xét tam giác ABC vuông tại A có:
\(\widehat{ABC}\) + \(\widehat{ACB}=90^o\) ( t/c của tam giác vuông)
hay \(\widehat{ABC}=90^o-30^o\)
\(\widehat{ABC}=60^o\)
Xét tam giác ABD cân tại A có:
\(\widehat{ABC}=60^o\) (cmt) (cần không nhỉ ???)
Do đó: ABD đều (ĐPCM)
b) Chứng minh tứ giác CEHA là hình thang sẽ suy ra được EH//CA (tự động não đi)
tam giac ABC can tai A
=>\(\widehat{B}=\widehat{C}=\dfrac{180-\widehat{A}}{2}=\dfrac{180-80}{2}=50^0\)
tam giac DEF can tai D
\(=>\widehat{D}=180-\left(\widehat{E}+\widehat{F}\right)\)
mà E = F =50o( do tam giac DEF can tai D_
\(=>\widehat{D}=180-\left(50+50\right)=80^o\)
=>\(\text{ ΔABC∼ΔDEF}\)
\(\widehat{D}=180^0-2\cdot50^0=80^0\)
=>ΔABC\(\sim\)ΔDEF
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)