Cho tam giác ABC vuông ở A,có AB=5cm;BC=13 cm.Ba đường trung tuyến AM;BN;CE cắt nhau tại O.
a)Tính AM;BN;CE.
b)Tính diện tích tam giác BOC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)
nên ΔAHC vuông cân tại H
=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)
\(\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\) (Pytago)
\(=5^2+12^2\)
\(=169\)
\(\Rightarrow BC=13\left(cm\right)\)
Gọi R là bán kính cần tìm
\(\Rightarrow\) Bán kính đường tròn ngoại tiếp \(\Delta ABC\):
\(R=\dfrac{BC}{2}=\dfrac{13}{2}=6,5\left(cm\right)\)
Theo định lý Pytago :
\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Tam giác ABC vuông tại A
\(AB^2=BH.BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)
\(AB.AC=AH.BC\\ \Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{5.12}{13}=\dfrac{60}{13}\left(cm\right)\)
\(AC^2=HC.BC\\ \Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABC vuông tại A có:
AB^2+AC^2=BC^2
5^2+12^2=BC^2
=>BC^2=169
=>BC=13.
Có:SABC=1/2.AB.AC=1/2.AH.BC=1/2.5.12=30
=>1/2.AH.13=30
=>AH=60/13