Cho \(A=-\dfrac{2}{3}x^3yz^2;B=xy^2z^3;C=-\dfrac{1}{2}x^2yz\)
Tính A.B.C rồi suy ra trong 3 đơn thức trên có ít nhất 1 đơn thức không âm với mọi x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)
\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có:
\(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)
\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)
\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)
Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)
\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)
\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)
a: \(=-\dfrac{2}{a}\cdot x^2\cdot x^3\cdot y^3\cdot y\cdot z^2=-\dfrac{2}{a}x^5y^4z^2\)
b: \(=-a\cdot\dfrac{1}{4}\cdot\left(-b\right)^3\cdot x\cdot xy^3\cdot y^3=\dfrac{1}{4}ab^3x^2y^6\)
a, \(=\dfrac{-2x^5y^3z^2}{a}\)
b, \(=-\dfrac{xa\left(xy^3\right).1\left(-b^3y^3\right)}{4}=\dfrac{xa\left(b^3xy^6\right)}{4}=\dfrac{x^2ab^3y^6}{4}\)
\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)
Ta có:
\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)
\(VT\ge2\left(x+y+z\right)+2y+4x\)
\(VT\ge2\left(3x+2y+z\right)\ge4\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(\frac{4.\left(x+3\right)}{3x-1}:\frac{x^2+3x}{3x-1}=\frac{4.\left(x+3\right)}{\left(3x-1\right)}\cdot\frac{\left(3x-1\right)}{x^2+3x}=\frac{4.\left(x+3\right)}{x.\left(x+3\right)}=\frac{4}{x}\)
\(a,\frac{x+2}{x-1}-\frac{x-9}{1-x}-\frac{x-9}{1-x}\)
\(=\frac{-x-2}{1-x}-\frac{x-9}{1-x}-\frac{x-9}{1-x}\)
\(=\frac{-x-2}{1-x}+\frac{-\left(x-9\right)}{1-x}+\frac{-\left(x-9\right)}{1-x}\)
\(=\frac{-x-2-x+9-x+9}{1-x}=\frac{-3x+16}{1-x}\)
Câu b,c mk chưa học, bn thông cảm
Còn câu a, nếu sai thì xin lượng thứ :))
Bạn tham khảo:
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24
Lời giải:
a)
\(\frac{x+2}{x-1}-\frac{x-9}{1-x}-\frac{x-9}{1-x}=\frac{x+2}{x-1}-\frac{2(x-9)}{1-x}\)
\(=\frac{x+2}{x-1}+\frac{2(x-9)}{x-1}=\frac{x+2+2(x-9)}{x-1}=\frac{3x-16}{x-1}\)
b)
\(\frac{x^2-9y^2}{x^2y}: \frac{xz-3yz}{3xy}=\frac{x^2-9y^2}{x^2y}.\frac{3xy}{xz-3yz}\)
\(=\frac{(x-3y)(x+3y)}{x^2y}.\frac{3xy}{z(x-3y)}=\frac{3(x+3y)}{xz}\)
c) \(\frac{4(x+3)}{3x-1}:\frac{x^2+3x}{3x-1}=\frac{4(x+3)}{3x-1}.\frac{3x-1}{x^2+3x}=\frac{4(x+3)}{x^2+3x}=\frac{4(x+3)}{x(x+3)}=\frac{4}{x}\)
\(A\cdot B\cdot C=\dfrac{-2}{3}x^3yz^2\cdot xy^2z^3\cdot\dfrac{-1}{2}x^2yz\)
\(=\left(-\dfrac{2}{3}\cdot\dfrac{-1}{2}\right)\cdot\left(x^3\cdot x\cdot x^2\right)\left(y\cdot y^2\cdot y\right)\cdot\left(z^2\cdot z^3\cdot z\right)\)
\(=\dfrac{1}{3}x^6y^4z^6>=0\forall x,y,z\)
=>ba đơn thức trên sẽ có ít nhất 1 đơn thức không âm với mọi x,y,z