K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

\(A=2x^2+3y\) chia hết cho 17

<=> \(2x^2+3y+34x^2+17y\) chia hết cho 17 (vì \(34x^2;17y\) đều chia hết cho 17)

<=>\(36x^2+20y=4\left(9x^2+5y\right)\) chia hết cho 17

Mà (4;17)=1

=>\(9x^2+5y=B\) chia hết cho 17

Vậy A  chia hết cho 17 <=> B chia hết cho 17

22 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.

Lời giải:

Ta có:

$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$

$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$

Mà:

$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$

Do đó: $\text{VT}> x^2+y^2$ (đpcm)

18 tháng 7 2018

Ta có : 

\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)

\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)

\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)

\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)

\(\Rightarrow A=\frac{3}{4}x^6y^5\)

Lại có : 

\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)

ADTCDTSBN , ta có : 

\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)

Thay \(x=1;y=\frac{2}{3}\)vào A ta được : 

\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)

\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)

\(\Rightarrow A=\frac{8}{81}\)

Vậy ...

18 tháng 7 2018

ta có hai cách giải

cách 1:

gọi x/3=y/2=k 

=> x=3k và y=2k

vì x+3y=3 => 3k+6k=3

=> 9k=3 => k=1/3

suy ra x=1 và y= 2/3 

* Thay vào x;y vào phép tính trên rồi tự tính nhé

nếu k cho mik mik sẽ gợi ý cách còn lại

THANKS

b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)

\(=3-6xy-2-6xy=-12xy+1\)

c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)

\(=101^2-3\cdot101^2+3\cdot101+2012\)

=1002013

23 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a. Theo t/c của dãy tỉ số bằng nhau ta có:

x+y+z/2+3+5=40/10=4

=>x=4.2=8

=>y=4.3=12

=>z=4.5=20

 

 

22 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)

18 tháng 8 2020

WTF đăng một loạt vầy ai dám làm @@

Mấy bài này trong sách bài tập cx có bài mẫu

tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết

11 tháng 8 2023

`a,x^3 - 3x^2 + 1 - 3x`

`=x^3 + 1 - 3x^2 - 3x`

`=(x^3 + 1) - 3x(x+1)`

`=(x+1)(x^2 - x + 1) - 3x(x+1)`

`=(x+1)(x^2 - x + 1 - 3x)`

`=(x+1)(x^2 - 4x + 1)`

`b,x^2 + 4x - 2xy - 4y + y^2`

`=(x^2 -2xy + y^2) + (4x-4y)`

`=(x-y)^2 + 4(x-y)`

`=(x-y)(x-y+4)`

`c,3x^2 -6xy + 3y^2 - 12z^2`

`=3(x^2 -2xy +y^2 - 4z^2)`

`=3[(x-y)^2 - (2z)^2]`

`=3(x-y-2z)(x-y+2z)`
 

a: =x^3+1-3x^2-3x

=(x+1)(x^2-x+1)-3x(x+1)

=(x+1)(x^2-x+1-3x)

=(x+1)(x^2-4x+1)

b: =x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

c: =3(x^2-2xy+y^2-4z^2)

=3[(x-y)^2-4z^2]

=3(x-y-2z)(x-y+2z)