Cho A và B so sánh chúng
biết A= \(\frac{10^{2005}+1}{10^{2006}+1}\); B= \(\frac{10^{2006}+1}{10^{2007}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10A=\(\frac{10x\left(10^{2004}+1\right)}{10^{2005}+1}\)=
Ta có:10A=\(\frac{10^{2005}+10}{10^{2005}+1}\)=1+\(\frac{9}{10^{2005}+1}\)
10B=\(\frac{10^{2006}+10}{10^{2006}+1}\) =1+\(\frac{9}{10^{2006}+1}\)
Mà:\(\frac{9}{10^{2005}+1}\) >\(\frac{9}{10^{2006}+1}\)
Vậy:1+\(\frac{9}{10^{2005}+1}\) >1+\(\frac{9}{10^{2006}+1}\)
Vậy:A>B
cho
GIAI GIUP MINH DI
A=\(\frac{37^{2018}+5}{37^{2019}+5}\)
B=\(\frac{37^{2018}+1}{37^{2019}+1}\)
Ta có: \(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=10.\frac{10^{2004}+1}{10^{2005}+1}\)
\(=\frac{10^{2005}+10}{10^{2005}+1}\)
\(=\frac{10^{2005}+1+9}{10^{2005}+1}\)
\(=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)
\(=1+\frac{9}{10^{2005}+1}\)
Tương tự ta có: \(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=10.\frac{10^{2005}+1}{10^{2006}+1}\)
\(=\frac{10^{2006}+10}{10^{2006}+1}\)
\(=\frac{10^{2006}+1+9}{10^{2006}+1}\)
\(=\frac{10^{2006}+1}{10^{2006}+1}+\frac{9}{10^{2006}+1}\)
\(=1+\frac{9}{10^{2006}+1}\)
Vì\(1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
(Muốn so sánh 2 phân số cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn, phân số nào có mẫu nhỏ hơn thì lớn hơn)
Nên\(A>B\)
Bạn có thể tham khảo ở đây :
Câu hỏi của Vân Trang Bùi - Toán lớp 6 | Học trực tuyến
Ta có B= 102005+1 /102006+1
=102004*10+1/102005*10+1
=102004+1/102005+1
Vậy A=B
Ta có
\(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(B=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\)
=>A>B
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{151}=3^{150}\cdot3=\left(3^2\right)^{75}\cdot3=9^{75}\cdot3\)
Mà \(9^{75}>8^{75}=>9^{75}\cdot3>8^{75}=>3^{151}>2^{225}\)
b) Nhân cả vế A lẫn vế B với 102005, ta có :
\(10^{2005}A=-7+\frac{-15}{10}=\frac{-70}{10}+\frac{-15}{10}=\frac{-85}{10}\)
\(10^{2005}B=-15+\frac{-7}{10}=\frac{-150}{10}+\frac{-7}{10}=\frac{-157}{10}\)
Mà \(\frac{-85}{10}>\frac{-157}{10}=>10^{2005}A>10^{2005}B\)
\(=>A>B\)
Chúc bạn học tốt!
Có \(A=\frac{10^{2005}+1}{10^{2006}+1}\) và \(B=\frac{10^{2006}+1}{10^{2007}+1}\)
\(\Rightarrow10A=\frac{10^{2006}+10}{10^{2006}+1}=\frac{10^{2006}+1}{10^{2006}+1}+\frac{9}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)
\(\Rightarrow10B=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
Có \(\Rightarrow\frac{9}{10^{2006}+1}>\frac{9}{10^{2007}+1}\Leftrightarrow1+\frac{9}{10^{2006}+1}>1+\frac{9}{10^{2007}+1}\)
\(\Rightarrow10A>10B\Leftrightarrow A>B\)